8.18 The Biological Pump in the Past

MP Hain and DM Sigman, Princeton University, Princeton, NJ, USA
GH Haug, Geologisches Institut, Zürich, Switzerland

© 2014 Elsevier Ltd. All rights reserved.

This article is a revision of the previous edition article by D. M. Sigman and G. H. Haug, volume 6, pp. 491–528, © 2003, Elsevier Ltd.

8.18.1 Introduction

Almost all organisms on Earth either harvest energy and produce organic matter through photosynthesis, or feed on organic matter that was ultimately produced by these ‘photoautotrophs.’ In addition to light as their source of energy, photoautotrophs require nutrients and inorganic carbon, which they extract from the environment. On land, newly produced biomass is rapidly recycled by plant respiration or heterotrophy, but a small fraction survives for a longer time before decomposition, either as long-lived tissue (e.g., wood), soil organic matter, peat, or organic matter buried in sediments. This leads to the accumulation of terrestrial organic carbon, at the expense of the environmental inorganic carbon reservoir, including atmospheric carbon dioxide (CO2). An increase in the quantity of terrestrial organic carbon driven by a temporary excess in organic carbon production relative to its oxidation thus lowers atmospheric CO2.

In the ocean, there are no aggregations of biomass comparable to the forests on land. Yet biological productivity in the ocean plays a central role in the sequestration of carbon away from the atmosphere, overshadowing the effects of terrestrial biospheric carbon storage on timescales longer than a few centuries. In an effort to communicate the ocean’s role in the regulation of atmospheric CO2, marine scientists frequently refer to the ocean’s biologically driven sequestration of carbon as the ‘biological pump.’ Every year, a fraction of the biomass produced in the sunlit surface ocean sinks into the dark ocean interior before being decomposed, thereby ‘pumping’ both nutrients and organic carbon (Corg) into the deep ocean, where the carbon is sequestered away from the atmosphere and the nutrients cannot be immediately used to fuel new production of biomass. The original strict definition of the ‘biological pump’ (Volk and Hoffert, 1985) emphasizes the importance of the biological sinking flux on the distribution of carbon in the ocean; the surface ocean is depleted in carbon relative to the ocean interior (Figure 1). As only the surface ocean can exchange carbon with the atmosphere, the sequestration of carbon at depth results in a lower partial pressure of CO2 (pCO2) of the surface water, thus also lowering atmospheric CO2. Soon after the discovery of much lower than modern atmospheric CO2 concentration during the last ice age (Berner et al., 1978; Delmas et al., 1980; Neftel et al., 1982), it was argued that a stronger biological pump must have been the cause of this CO2 drawdown (Broecker, 1982a,b). The main focus of this review is to provide an overview of the concepts, tools, and observations that have been developed since then to reconstruct the efficiency of the biological pump in the past and to quantify the impact it has had on atmospheric CO2 levels. As we see later, this body of work speaks to the three major topics of modern oceanography: the ocean’s physical circulation, chemical composition, and biological activity.

The place of the biological pump in the global carbon cycle is illustrated in Figure 2. The atmosphere exchanges carbon...
with essentially three reservoirs: the ocean, the terrestrial biosphere, and the geosphere. The ocean holds roughly fifty times as much carbon as does the atmosphere and almost twenty times as much as the terrestrial biosphere. At any given time, only ~10% of the carbon in the ocean can be said to be sequestered by the action of the biological pump. However, given the much greater size of the ocean carbon reservoir, even a small change in the amount of deeply sequestered carbon can have a substantial impact on the atmospheric CO₂ inventory.

The effect of the biological pump is not permanent because ocean overturning continuously acts to erase the gradient in carbon concentration that is driven by the sinking of carbon-bearing biogenic material, thereby exposing once sequestered carbon to the atmosphere and reversing the drawdown of atmospheric CO₂ that was caused by its sequestration (e.g., DeVries et al., 2012). Thus, the biological pump exerts its control on atmospheric CO₂ only on the timescale that it takes ocean overturning to bring the water of the ocean interior to the surface (between 500 and 1500 years depending on the ocean basin; e.g., DeVries and Primeau, 2011). For its carbon sequestration to persist, its component processes (e.g., the downward flux of organic matter) must be maintained.

The dynamics of marine organic carbon (Corg) can be described as a set of three nested cycles in which the biological pump is the cycle with flux and reservoir of intermediate magnitude (Figure 3). The cycle with the shortest timescale, which operates within the surface ocean, is composed of net primary production by phytoplankton (their photosynthesis less their respiration) and heterotrophic respiration by zooplankton and bacteria that oxidize most of the primary production back to CO₂. This cycle is by far the greatest in terms of the flux of carbon, but the reservoir of organic carbon that accumulates in surface waters (phytoplankton biomass, dead organic particles, and dissolved organic carbon) is small relative to the atmospheric reservoir of CO₂, and it has a short residence time (less than a year). However, 10–50% of the organic matter produced by net primary production escapes immediate heterotrophic respiration within the surface and instead sinks (or is mixed) to depth before it is decomposed (e.g., Henson et al., 2012 and references therein). This ‘export production’ drives the biological pump (Figure 3).

At the long timescale extreme of the global carbon cycle, a tiny fraction of the organic matter exported from the surface ocean survives its passage through the water column and sediment/water interface and is buried in the accumulating sediments, thereby removing carbon from the ocean/atmosphere system (Figure 3). On the timescale of geologic processes, this carbon removal is balanced by the oxidation of the organic matter when it is exposed at the Earth surface by uplift and weathering or when it is released by metamorphism and volcanism. While the fluxes involved in this cycle are small, the organic carbon reservoir of the solid Earth is large, so that the importance of these fluxes increases with timescale, becoming clearly relevant on the timescale of millions of years. Neither
the Corg burial flux nor the release of carbon from the solid Earth helps to maintain the gradient of carbon concentration between the ocean’s surface and its interior and thus, by definition, these aspects of the carbon cycle are not part of the biological pump. While these processes are clearly of interest in Earth history, for the sake of brevity, they are not discussed further below.

Additionally, also for the sake of brevity, we presume below a set quantity of the ‘major nutrients’ nitrogen and phosphorus in the ocean; that is, we do not consider the possibility or implications of ocean nutrient reservoir changes. In so doing, we are skipping an extremely rich topic that is almost certainly relevant to past events in Earth history. Further, the first hypotheses regarding glacial/interglacial CO2 change focused on nutrient reservoir changes (Broecker, 1982a,b). We avoid this topic here because we think there are strong arguments against a role for such changes in glacial/interglacial change (e.g., Ren et al., 2012), which we have discussed in previous reviews (e.g., Sigman and Boyle, 2000; Sigman and Haug, 2003).

So far, we have discussed biogenic material in terms of organic matter, but many marine organisms also extract carbon from surface waters to produce inorganic carbon compounds, chiefly calcium carbonate (CaCO3). As discussed in detail in Section 8.18.2.1, the rain of CaCO3 from the surface to depth acts to raise atmospheric CO2 despite driving carbon sequestration akin to the sinking of organic matter. For this reason, it is important to distinguish these two components of the biological pump: the ‘soft-tissue pump’ and the ‘carbonate pump’ (Figure 1). As with the respiration of Corg rain, the majority of the CaCO3 rain from the surface dissolves while sinking or once it reaches the seafloor. However, relative to organic matter, a greater fraction of the CaCO3 rain is preserved and buried, so that CaCO3 production by organisms in the surface is a major contributor to open ocean sedimentation, and this burial flux constitutes the largest sink of carbon from the ocean/-atmosphere system. On the timescale of a few thousand years, this sizable loss of CaCO3 from the ocean is balanced primarily by input through rivers that carry dissolved CaCO3.
It is maintained, not erased, by ocean circulation. Unlike the other pumps, this effect has been named the ‘solubility pump’ (Toggweiler et al., 2003a; Volk and Hoffert, 1983); unlike the other pumps, it is maintained, not erased, by ocean circulation.

Once techniques were developed to measure the CO2 concentration of air bubbles trapped in ice cores, it was discovered that atmospheric CO2 levels were low during the last ice age (Berner et al., 1978; Delmas et al., 1980; Neftel et al., 1982). Since that time, major international research efforts have provided a transformative account of atmospheric CO2 variations that mirror the waxing and waning of ice ages – over the last glacial cycle (Barnola et al., 1987), the last two glacial cycles (Jouzel et al., 1993), the last four glacial cycles (Petit et al., 1999), and the last eight glacial cycles (Lüthi et al., 2008; Siegenthaler et al., 2005; see also EPICA Community Members, 2004; Figure 4). During interglacial times, such as the Holocene (roughly the past 10,000 years), the atmospheric partial pCO2 was typically near 280 parts per million by volume (ppmv). During peak glacial times, such as the Last Glacial Maximum (LGM) about 22,000 years ago, atmospheric CO2 was 180–200 ppmv or roughly 80–100 ppmv lower. Overall, the decline from high interglacial to low glacial levels proceeds over tens of thousands of years, punctuated by rapid fluctuations (e.g., Indermühle et al., 2000; Neftel et al., 1988) and episodes of rapid decline (e.g., Ahn and Brook, 2008), whereas the rise of CO2 at the abrupt termination of ice ages takes only a few thousand years (e.g., Monnin et al., 2001; Neftel et al., 1982). The rapidity of major rises and falls in CO2 is strong evidence that much of the CO2 change was driven by carbon redistributions within the atmosphere/ocean/terrestrial biosphere system. Thus, changes in the efficiency of the biological pump – and their impacts on the ocean’s CaCO3 cycle – have emerged as a prime contender to explain the overall pattern of reconstructed CO2 variations. Moreover, for the last glacial cycle and especially, the last deglaciation, temporal resolution, dating, and correlation to other climate records have improved (e.g., Ahn and Brook, 2007, 2008; Bender, 2002; Bender et al., 1994; Bereiter et al., 2012; Blunier and Brook, 2001; Kawamura et al., 2007; Lemieux-Dudon et al., 2010; Monnin et al., 2001; Neftel et al., 1988; Severinghaus et al., 1998; Sowers and Bender, 1995; Sowers et al., 1989, 1993). The improving ice core records and their correlation to marine observations reveal temporal coincidence between millennial-scale variations of CO2 and changes in the ocean’s circulation and biological productivity (e.g., Anderson et al., 2009a; Barker et al., 2009, 2011; Burke and Robinson, 2012; Fischer et al., 2010; Gherardi et al., 2009; McManus et al., 2004; Robinson et al., 2005a; Sigman et al., 2010; Skinner et al., 2010; Thornalley et al., 2011a,b; Waelbroeck et al., 2011).

Release and sequestration of carbon by the ocean imply a significant role of the greenhouse gas CO2 in the energetics of glacial/interglacial climate change (e.g., Cai and Cowan, 2007; Pepin et al., 2001; Weaver et al., 1998; Webb et al., 1997). However, the ultimate pacing of glacial cycles is statistically linked to ‘Milankovitch cycles’ in the orbital parameters of the Earth, with characteristic frequencies of roughly 100, 41, and 23 thousand years (Berger, 1978a,b, 1988; Hays et al., 1976; Huybers, 2007, 2011; Huybers and Wunsch, 2005). Thus, the radiative forcing of variable CO2 levels is best viewed as an amplifying feedback in the climate system. Conversely, it appears that, even on short timescales, the biological pump and the carbon cycle are sensitive to changes in the climate system (e.g., Le Quéré et al., 2007; Russell et al., 2006; Sarmiento et al.,...
In the age of man-made climate change, it is a high priority to understand this coupling on a mechanistic level.

8.18.2 Concepts

Reconstructions of oceanic, atmospheric, and terrestrial conditions during the ice ages are required to identify the mechanisms that caused the drawdown of atmospheric CO2 during the ice ages and at what point in time they were activated. However, the reconstruction of environmental parameters is not easily translated into the effect of a given change on atmospheric CO2; both conceptual and numerical models are required for this purpose. Here, we describe a hierarchy of concepts, from alkalinity to ocean ventilation, that form a theoretical basis for the interpretation of environmental reconstructions in terms of CO2 impact.

8.18.2.1 Aqueous Carbon Chemistry

CO2 gas has a low solubility in seawater, but it forms carbonic acid (H2CO3) that can deprotonate to hydrogencarbonate ion (HCO3−) and carbonate ion (CO32−) which together greatly increase the concentration of dissolved inorganic carbon (DIC) (eqn [1] and Figure 1):

$$
\text{CO}_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \rightleftharpoons 2H^+ + CO_3^{2-}
$$

[1]

In eqn [1], H2CO3 refers to both dissolved CO2(aq) and H2CO3. Formally, the concentration of DIC equates to the sum of the individual concentrations of all the DIC species.

When water is in contact with the atmosphere, CO2 can either evade to the atmosphere or invade the water, depending on the difference between the partial pressure of CO2 of the atmosphere (pCO2 atm) and that of the water (pCO2 w), which depends solely on the concentration of H2CO3 and the thermodynamic solubility constant Ksol (eqn [2a]):

$$
\rho\text{CO}_2(aq) = K_{sol} \cdot \text{H}_2\text{CO}_3^+
$$

[2a]

The expression relative to DIC is more complicated because of the deprotonated components of DIC (eqn [2b]):

$$
\rho\text{CO}_2(aq) = K_{sol} \cdot \text{DIC} \cdot \frac{1}{1 + K_1 \cdot H^+ + K_1 \cdot K_2} H^+ \cdot H^+
$$

[2b]
The thermodynamic constants, especially K_{ab}, are temperature and salinity dependent such that the net effect of reconstructed bulk ocean cooling (~ 2.7 °C; Headly and Severinghaus, 2007) and elevated salinity (>1.15 practical salinity units; Adkins et al., 2002) should have combined to drive ~ 20 ppm of the 80–100 ppm glacial CO$_2$ drawdown (the cooling causing an atmospheric CO$_2$ decline and the increased salinity causing a CO$_2$ rise). To explain the rest of the CO$_2$ decline, H$_2$CO$_3$ must have been lower (in the sense of eqn [2a]) due to some combination of low DIC and low H$^+$ (in the sense of eqn [2b]). It is simplest to describe the effect of the biological pump on CO$_2$ as stemming from sequestration of DIC at depth, which lowers the DIC and thus pCO$_2$ in surface waters that must then equilibrate with the atmosphere. However, the larger part of the surface ocean pCO$_2$ reduction by the biological pump operates through the pH effect of lowering surface ocean DIC ($\text{pH} = -\log_{10}(H^+)$); it is specifically the weak acid H$_2$CO$_3$ that is removed in the production and export of soft-tissue organic matter, which raises the pH of surface waters and repartitions DIC away from H$_2$CO$_3$ and toward hydroxycarbonate and carbonate (Figure 1).

As a result of the pH dynamic, an adequate description of the biological pump must include its simultaneous effect on DIC and 'alkalinity,' the latter referring to the excess of base the biological pump must include its simultaneous effect on DIC (in the form of organic carbon, C$_{org}$) from surface waters but does not greatly affect its ALK, whereas the export of CaCO$_3$ associated with the carbonate pump depletes surface water ALK and DIC in exactly a 2:1 ratio.

The following approximate relationships (Broecker and Peng, 1982) are helpful in understanding the chemical underpinnings of the biological pump by illustrating the opposing effects of changes in DIC and ALK (eqn [3a]–[3d]):

$$\text{HCO}_3^- \approx 2\text{DIC} - \text{ALK} \quad \text{[3a]}$$

$$\text{CO}_3^{2-} \approx \text{ALK} - \text{DIC} \quad \text{[3b]}$$

$$H^+ \propto \frac{\text{HCO}_3^-}{\text{CO}_3^{2-}} \approx \frac{2\text{DIC} - \text{ALK}}{\text{ALK} - \text{DIC}} \quad \text{[3c]}$$

$$p\text{CO}_2 \propto H^+ \cdot \text{HCO}_3^- \approx \frac{(2\text{DIC} - \text{ALK})^2}{\text{ALK} - \text{DIC}} \quad \text{[3d]}$$

Referring to these approximations, the biological pump affects seawater chemistry in two independent ways. First, when organisms extract DIC from surface water (the soft-tissue pump, green in Figure 1), HCO$_3^-$ declines (eqn [3a]) and CO$_3^{2-}$ rises (eqn [3b]). That is to say, in addition to the simple removal of DIC, the remaining carbon is shifted from H$_2$CO$_3$ and HCO$_3^-$ toward CO$_3^{2-}$ (from left to right in eqn [1]). This shift is manifested in a decline in H$^+$ (eqn [3c]), which, along with the reduction in HCO$_3^-$, causes the reduction of pCO$_2$ (eqn [3d]). Second, when organisms extract ALK from surface water (the greatest effect of the carbonate pump, purple in Figure 1), HCO$_3^-$ rises (eqn [3a]) and CO$_3^{2-}$ declines (eqn [3b]). That is, the removal of ALK shifts the carbon species from CO$_3^{2-}$ toward HCO$_3^-$ and H$_2$CO$_3$ (from right to left in eqn [1]). Thus, ALK removal manifests itself as a rise in both HCO$_3^-$ (eqn [3a]) and H$^+$ (eqn [3c]), which combine to cause an increase in pCO$_2$ (eqn [3d]). Remineralization of biogenic material at depth, after it was exported from the surface, releases DIC and ALK, thereby causing chemical changes in deep water in the reverse direction as their removal causes in surface waters (Figure 1). As was outlined earlier, the biological pump is defined through the DIC gradient it maintains in the ocean, with lower DIC at the surface than at depth. The effect on atmospheric CO$_2$ of the biological pump, however, operates through the combined depth gradients in DIC and ALK and their net effect on surface water pH and pCO$_2$.

The final aspect of ocean carbon chemistry that is important to review in the context of glacial/interglacial CO$_2$ variations involves the dissolution of CaCO$_3$. Since the concentration of calcium (Ca$^{2+}$) is almost uniform in the ocean, the expression for the CaCO$_3$ saturation state (Ω) can be usefully simplified (eqn [4]):

$$\Omega \approx \frac{\text{CO}_3^{2-}}{\text{CO}_3^{2-} \text{(sat)}} \approx \frac{\text{ALK} - \text{DIC}}{\text{CO}_3^{2-} \text{(sat)}} \quad \text{[4]}$$

In principle, CaCO$_3$ is precipitated from solution when supersaturated ($\Omega > 1$), and it dissolves when undersaturated ($\Omega < 1$). In the modern ocean, the kinetics of abiotic CaCO$_3$ precipitation render this process unimportant, and almost all CaCO$_3$ precipitation is mediated or controlled by organisms growing in highly supersaturated waters near the surface (Stumm and Morgan, 1981). Indeed, the removal of DIC from surface waters by the biological pump is one reason for this CaCO$_3$ supersaturation (see eqn [3b]; Figure 1). For every mole of CaCO$_3$ burial on the seafloor, two moles of ALK and one mole of DIC are permanently removed from the ocean, thereby raising CO$_2$ in the atmosphere (eqn [3d]; Figure 1). However, for three reasons, most of the CaCO$_3$ rain from the surface dissolves rather than being buried in deep-sea sediments. First, the solubility of CaCO$_3$ (i.e., CO$_3^{2-}$ (sat) in eqn [4]) increases with pressure, and pressure increases with water depth so as to reduce Ω. Second, as a consequence of the sequestration of DIC by the biological pump, CO$_3^{2-}$ is much lower in the ocean interior than at the surface (see eqn [3b]; Figure 1). Third, the respiration of C$_{org}$ in seafloor sediments reduces the CO$_3^{2-}$ in the sediment pore water so as to allow for sedimentary CaCO$_3$ dissolution even if the overlying bottom water is supersaturated ($\Omega > 1$), and it enhances dissolution where the bottom water is undersaturated (Emerson and Bender, 1981). Overall, a substantial fraction of the CaCO$_3$ rain is preserved and buried when it is intercepted by shallow seafloor (Figure 2), but it dissolves essentially completely if it rains onto deeper seafloor. The carbonate compensation depth, above which CaCO$_3$ accumulates in seafloor sediments and below which it does not (because it dissolves at the same rate that it is delivered), and the lysocline, the depth interval in the water column over which the rate of CaCO$_3$ dissolution increases dramatically, are both correlated with the depth horizon at which CaCO$_3$ is at saturation (e.g., Archer, 1991).

8.18.2.2 Soft-Tissue versus Carbonate Pump

As described earlier, the soft-tissue and carbonate components of the biological pump affect the DIC and ALK of surface water in different ways so as to cause opposing effects on
atmospheric CO$_2$ (eqn [3b] and Figure 1). However, the carbonate pump only partially cancels the soft-tissue pump’s CO$_2$ drawdown because its effect on CO$_2$ is typically weaker. Further, there are two major sources of decoupling between these opposing pumps: (1) not all organic matter that sinks is associated with CaCO$_3$ and (2) there are distinct rates for soft-tissue versus carbonate material that sink into the ocean interior. In this section, we describe how the two pumps are decoupled in the modern ocean and how this may relate to ocean changes during the ice ages.

One cornerstone of modern oceanography is the discovery that the concentration of nutrients, oxygen, and DIC are correlated in the ocean interior and that these correlations correspond to the respiration products of organic matter produced in surface waters (Redfield, 1934). The soft tissue of planktonic organisms of the open ocean is characterized by relatively conserved proportions of carbon, the amount of oxygen consumed during respiration, and the nutrients nitrogen (N) and phosphorus (P, as PO$_4^{3-}$), which became known as the canonical ‘Redfield ratios’ – C:N:P:O$_2$ of 106:16:1:276 (Anderson and Sarmiento, 1994; Redfield, 1958; Takahashi et al., 1985; but for evidence of variability, see Deutsch and Weber, 2012; Mills and Arrigo, 2010; Weber and Deutsch, 2010). The detailed comparison of ocean interior distributions of nutrients with apparent oxygen consumption by respiration reveals that only roughly half of the major nutrients, N and P, in the ocean interior are derived from organic matter respiration (‘regenerated nutrients’), whereas the other half (‘preformed nutrients’) must have been emplaced by ocean circulation. Since regenerated nutrients were used in the surface to produce C$_{org}$, their appearance at depth signals the sinking and subsequent sequestration of carbon in the deep ocean, while the preformed nutrients were not utilized at the surface and thus do not contribute to carbon sequestration (i.e., they represent a ‘missed opportunity’ for carbon sequestration). The ocean average concentration of regenerated nutrients thus tracks the overall strength of the soft-tissue pump, and the fraction of all P that is regenerated can be referred to as the ‘efficiency’ of the soft-tissue pump (if all P is regenerated, the soft-tissue pump is working at maximum efficiency). Based on these considerations and the carbon chemistry outlined in Section 8.18.2.1, the impact on CO$_2$ of changes in the concentration/fraction of regenerated nutrients can be calculated (Ito and Follows, 2005). Depending mainly on the assumed stoichiometry (i.e., the C:P ratio) of the organic matter, the sensitivity of atmospheric CO$_2$ to the soft-tissue pump in isolation ranges between 13 and 20 ppm CO$_2$ drawdown for every 0.1 μM ocean average increase in regenerated P (Hain et al., 2010; Ito and Follows, 2005; Kwon et al., 2011; Marinov et al., 2006).

The ratio of CaCO$_3$ to soft tissue varies greatly among organisms. Thus, there is no globally valid relationship between the export rates of C$_{org}$ and CaCO$_3$. Moreover, sinking C$_{org}$ is rapidly respired in the shallow water column (Berelson, 2001 and references therein; Martin et al., 1987) along with the release of regenerated nutrients, whereas the dissolution of sinking CaCO$_3$ proceeds much more slowly, and so most of the rain dissolves only once it has reached the deep seafloor. For these reasons, the regenerated nutrient metric (and oxygen depletion) cannot be used to infer the strength of the carbonate pump. Techniques have been developed to deconvolve from ocean data the concentration of alkalinity that can be attributed to the dissolution of CaCO$_3$ (Chung et al., 2003; Feely et al., 2002; Sabine et al., 2002), and changes in this globally averaged metric can be used to calculate the CO$_2$ effect of changes in the strength of the carbonate pump (Hain et al., 2010). The sensitivity of atmospheric CO$_2$ to the carbonate pump is ~5 ppm CO$_2$ increase for every 10 μM ocean average increase in alkalinity from CaCO$_3$ dissolution at depth (Hain et al., 2010; Kwon et al., 2011).

For the biological pump to drive a change in atmospheric CO$_2$, either regenerated nutrient or regenerated alkalinity has to change. This can be achieved by changing either the rate of the pumps (remineralization/dissolution rates of the biogenic rain) or the rate at which ocean circulation works against the pumps (the rate at which ocean interior water is brought to the surface). Specifically, greater export of organic matter and/or a greater residence time of the products of respiration in the interior result in a decline of unused nutrients in the surface and act to transform preformed P to regenerated P, thereby causing a drawdown of atmospheric CO$_2$. Likewise, an increase of the CaCO$_3$ rain and/or an increase of the residence time of its dissolution products at depth act to increase the concentration of sequestered alkalinity, which causes atmospheric CO$_2$ to rise. Therefore, reconstructions of ice age export production, CaCO$_3$ rain, and the rate of exchange between the surface and the deep ocean are important constraints on the role of the biological pump in driving the observed CO$_2$ variations (Sections 8.18.3.1–8.18.3.2). Additionally, reconstructions of a few environmental parameters, such as the oxygen concentration of the ocean interior or the distribution of stable carbon isotopes, speak relatively directly to the concentration of carbon sequestered by the soft-tissue pump (Section 8.18.3.3).

Despite the formal correctness of the flux-based view of the soft-tissue and carbonate pumps phrased above, it has often led to incorrect inferences. For example, many workers think of carbon storage in the interior as necessarily being correlated with the age of the deep ocean. This is violated in many cases, largely because there is typically coupling (and variable coupling) between the rate at which deep water is brought to the surface (causing nutrient supply) and the rate at which ocean circulation works against the surface (causing nutrient supply) and the rate at which C$_{org}$ is produced and sinks out of the surface ocean. For example, increasing the surface/deep communication in a region where all the surface nutrients are consumed (such as the low-latitude ocean) causes the increased upward transport of deeply sequestered CO$_2$ to be countered by increased C$_{org}$ export, with no net effect in the soft-tissue pump (e.g., in the context of a conceptualized two-box ocean; Figure 5(a)). Despite the deep ocean becoming more recently ventilated (‘younger’) in this situation, the strength and efficiency of the soft-tissue pump are unchanged. In contrast, if surface/deep communication increases in a region of incomplete surface nutrient consumption, then the upwelling of sequestered carbon may increase more than the counteracting downward flux of sinking C$_{org}$. In this case, increased ocean ventilation (i.e., a younger deep ocean) will indeed translate to a weaker soft-tissue pump. Finally, we must note that the carbonate pump has very different (and typically much weaker) coupling to the rate at which water cycles between the surface and the deep ocean. The CaCO$_3$ flux is not as strongly correlated with nutrient supply
Mixing

ventilating most of the ocean interior (Knox and McElroy, 1984; Sarmiento and Toggweiler, 1984; Siegenthaler and Wenk, 1984; see also (Knox and McElroy, 1984; Sarmiento and Toggweiler, 1984; Siegenthaler and Wenk, 1984; see also Figure 6 and Section 8.18.2.3)); (c) it is still more accurate to recognize that the ocean interior is ventilated by two high-latitude regions with distinct conditions, the nutrient-rich Southern Ocean and the nutrient-poor North Atlantic, the latter representing a region that allows nutrient-poor low-latitude surface waters back into the ocean interior (Toggweiler, 1999; see Section 8.18.2.4). Even in the current age of spatially resolved ocean models with thousands of boxes, these simple conceptualizations remain highly relevant (e.g., Marinov et al., 2008).

to the surface ocean, so that changes in the rate of deep-ocean ventilation translate more directly to changes in the carbonate pump. Because the increased upwelling of regenerated alkalinity is unlikely to be matched perfectly by increasing CaCO3 rain, an increased surface/deep communication will likely yield a decrease in the proportion of total alkalinity in the ocean interior that is regenerated (i.e., an increase in preformed alkalinity). That is, unlike for the soft-tissue pump, it is relatively safe to assume that an ‘older’ deep ocean is one with a stronger carbonate pump while a ‘younger’ deep ocean has a weaker carbonate pump.

These caveats speak to the limitations of thinking of the ocean as two reservoirs – surface and interior (Figure 5(a)). Specifically, the two-box ocean view does not speak to the fact that low- and high-latitude ocean regions show different degrees of coupling between nutrient supply from the interior and Corg (and CaCO3) production in surface waters. Moreover, it does not address the fact that most of the communication between the ocean interior and the surface ocean occurs in polar regions. Next, we turn to this low-versus high-latitude distinction (Figure 5(b)).

8.18.2.3 Low-versus High-Latitude Ocean

As outlined earlier, only roughly half of the total ocean inventory of the major nutrients, N and P, is regenerated from soft-tissue rain and thus only this half contributes to biological carbon sequestration at depth and atmospheric CO2 drawdown. The origin of the other half of the ocean’s nutrient inventory, preformed nutrients, must be surface water where biological productivity does not utilize all nutrients. Shipboard sampling efforts have been interpolated to yield the average concentration of various nutrients in surface waters (Figure 6(a)–6(c)), and the ocean’s color as observed from space can be used to deduce the concentration of chlorophyll – the pigment used by phytoplankton to harvest the sun’s energy during photosynthesis – which may be taken as a crude representation of the distribution of ocean productivity (Figure 6(d)). Based on these data, the surface ocean may be usefully separated into two domains: (1) the high-latitude surface with high nutrient concentrations and high productivity and (2) the low-latitude surface with low nutrient concentrations and low productivity (Figure 5(b)). Shortly after Broecker (1982a,b) described the potential of changes in the biological pump to explain glacial/interglacial CO2 change, three research groups pointed out the significance of this three-box (two surface, one deep) view of the ocean for ice age CO2 changes (Knox and McElroy, 1984; Sarmiento and Toggweiler, 1984; Siegenthaler and Wenk, 1984). In this section, we separately discuss the soft-tissue and carbonate pumps in this context.

The CO2 record recovered from ice cores (Figure 4) is punctuated by episodes of rapid CO2 decline and CO2 rise. Indeed, these CO2 changes appear too rapid and have the wrong timing to be explained by changes in the ocean’s phosphate (P) inventory (Broecker and Henderson, 1998; Sigman and Boyle, 2000), and we subscribe to the view that the nitrogen inventory could not have changed independently of it (Deutsch et al., 2007; Haug et al., 1998; Ren et al., 2009; Tyrrell, 1999). Despite these constraints, the soft-tissue pump can still be the cause of the CO2 drawdown: less of ocean’s P may have been preformed (without carbon sequestration) and thus more regenerated (driving carbon sequestration). In the modern low-latitude ocean, biology is already able to make use of almost all nutrients brought to the surface, and thus only more efficient utilization of nutrients in the high-latitude ocean can increase the global efficiency of the soft-tissue pump. Moreover, surface water at high latitude is cold and dense while low-latitude surface water is warm and buoyant. Therefore, the voluminous ocean interior is filled with water rich in preformed nutrients originating from the high-latitude surface – this is the reason that half of the ocean’s nutrient inventory is preformed today. There are two ways to reduce surface nutrient concentrations at high latitudes: (1) greater productivity leading to a greater rate of organic matter export.
Figure 6 Surface ocean parameters fundamental to productivity in the surface ocean: the surface concentrations of the ‘major nutrients’ (a) phosphate (P-bearing PO₄³⁻) and (b) nitrate (N-bearing NO₃⁻), and of (c) the nutrient silicate (SiO₄⁴⁻), which is required mostly by diatoms, a group of phytoplankton that build opal tests; and the concentrations of (d) chlorophyll, a qualitative index of phytoplankton abundance and thus net primary productivity.

(Continued)
Figure 6—Cont’d Comparison of (d) with (a), (b), and (c) demonstrates that phytoplankton abundance, at the coarsest scale, is driven by the availability of these nutrients, and these nutrients are generally most available in the polar ocean, where nutrient-rich deep water mixes more easily to the surface. However, among the nutrient-bearing high-latitude regions, there is not a good correlation between nutrient concentration and chlorophyll, indicating that other parameters (i.e., iron and light) come to limit productivity in these regions. The high-latitude ocean of the southern hemisphere, which has the highest nutrient concentrations, is known as the Southern Ocean. It is composed of the more polar Antarctic Zone, where the silicate concentration is high and diatom productivity is extensive, and more equatorward Subantarctic Zone, where nitrate and phosphate remain high but silicate is scarce. The strong global correlation between phosphate and nitrate, originally recognized by Redfield (1934), allows us to group the two major nutrients (N and P) together when considering their internal cycling within the ocean, as they are exhausted in more or less the same regions (see Section 8.18.2.2). The nutrient data in (a), (b), and (c) are from the 2009 World Ocean Atlas (Garcia et al., 2009). The surface chlorophyll map in (d) is from composite data from the NASA SeaWiFs satellite project collected between September 1997 and August 2000 (http://oceancolor.gsfc.nasa.gov).
Dissolved SiO₂ to the low-latitude surface is expected to increase in this regard, the three-box view of the ocean violates reality (Figure 5(b)). As pointed out earlier, much of the CaCO₃ rain reaches the cold deep ocean, and thus the rate of water exchange between the high-latitude surface and the ocean interior is the critical parameter that determines the residence time of regenerated alkalinity at depth (Hain et al., 2010). Moreover, a greater supply of dissolved SiO₂ to the low-latitude surface is expected to increase the fraction of export production by diatoms, such that even at constant low-latitude export production, the rate of CaCO₃ rain may have declined in the past (Matsumoto and Sarmiento, 2008).

Deep-ocean ventilation works to counter the gradient driven by fluxes of both C-org and CaCO₃ associated with the soft-tissue and carbonate pumps, respectively. As the soft-tissue and carbonate pumps have opposing effects on atmospheric CO₂, the net effect of the rate of deep-ocean ventilation requires careful consideration. For example, a reduction in exchange between the ocean interior and a high-nutrient region of the high-latitude surface may promote more complete nutrient utilization in the surface or, as described below, may cause other regions with more complete nutrient utilization to become more important in the ventilation of the ocean interior. Either of these changes would make the global soft-tissue pump more efficient, leading to a lower steady-state atmospheric CO₂ concentration. However, the decrease in high-latitude ventilation also allows for more regenerated alkalinity to be sequestered in the interior by the carbonate pump, which works to raise CO₂. While the effect on CO₂ of the soft-tissue pump typically dominates when high-latitude ventilation is changed in geochemical models, the CO₂ effect of the carbonate pump can be equal or even greater in some model scenarios (Hain et al., 2010, 2011).
Zone of the Southern Ocean, near the coast of Antarctica, deepwater formation is closely related to the winter-time cooling of surface waters, sea ice formation, and the interaction of subsurface waters with ice shelves (e.g., Iudicone et al., 2008; Orsi et al., 1999; Price and Baringer, 1994), leading to deep waters that are the densest of the modern ocean, mainly because they are extremely cold (Antarctic Bottom Water – AABW). Due to the small density difference between the deep ocean and the Antarctic surface, vertical exchange of water and nutrient supply to the surface is rapid, leading to very high surface nutrient concentrations and a large burden of preformed nutrients carried by AABW (Figure 7(a); Southern Ocean loop). In the North Atlantic, however, the Gulf Stream and its extension (the North Atlantic Drift) carry very warm and salty low-latitude surface water to high latitude. In the Greenland and Labrador seas, these very saline surface waters cool to become sufficiently dense to sink, leading to more saline but less cold deep waters (NADW) than AABW (e.g., Kuhlbrodt et al., 2007). As

Figure 7 Schematic view of the roles of different ocean regions in (a) the soft-tissue pump and (b) the carbonate pump. In both panels, the blue and orange lines show the transport of water and CO$_3$,2 respectively. In (a), the black lines show the transport of major nutrients (represented by phosphate); in (b), the black lines show the transport of alkalinity. The solid, wavy, and dashed lines indicate transport by water flow, sinking organic matter, and air–sea exchange, respectively. The deep ocean interior is filled with cold, dense waters originating from polar ocean regions, either the northern North Atlantic (left-hand side) or the Southern Ocean (right-hand side). We first consider the implications of this bipolar deep-ocean ventilation for the soft-tissue pump. In (a), the loop on the left shows the high efficiency imparted to the pump by the low-latitude, low-nutrient surface regions. Nutrient-bearing subsurface water, after being upwelled or mixed to the surface, is warmed by the sun, making it buoyant, and the growth of phytoplankton completely extracts its dissolved nutrients. The particulate organic matter from this growth sinks to the ocean interior, where it is decomposed to ‘regenerated’ nutrient and excess CO$_2$ (CO$_2$ added by regeneration of Corg), sequestering CO$_2$ away from the atmosphere and into the deep ocean. Under steady ocean circulation, the continuous upwelling and warming of water in the low latitudes must be balanced by an equivalent rate of densification and sinking and deep-water formation. The nutrient-poor low-latitude surface waters cannot return immediately into the interior but must first become dense by cooling; today, this occurs dominantly in the high-latitude North Atlantic, included on the left side of the diagram. The loop on the right shows the low efficiency imparted by the high-latitude, high-nutrient surface regions, currently dominated by the Southern Ocean, especially its Polar Antarctic Zone near the margin of Antarctica. Because of vigorous vertical circulation, rapid nutrient supply, and poor light and iron conditions in the Antarctic, nutrient-rich and excess CO$_2$-rich water comes into the surface and descends again with most of its dissolved nutrient remaining (now referred to as ‘preformed’). Soft-tissue organic matter consists of assimilated carbon and nutrients, such that preformed nutrients in the ocean interior record a ‘missed opportunity’ for deep-ocean carbon sequestration by the soft-tissue pump. Put another way, the Southern Ocean loop releases to the atmosphere CO$_2$ that had been sequestered by the regenerated nutrient loop involving the low latitudes and North Atlantic. Therefore, reducing the volume of the ocean interior ventilated by the Southern Ocean loop (i.e., increasing the volume ventilated by the North Atlantic loop) represents one mechanism for increasing the efficiency of the soft-tissue pump. There is a similar effect of the two regions of ventilation on the carbonate pump (b), but this translates to an opposing effect on atmospheric CO$_2$ (see orange arrows). Biogenic CaCO$_3$ rain is prominent in the low-latitude ocean. Therefore, when nutrient-bearing water is cycled through the North Atlantic loop of ocean overturning, the rain of CaCO$_3$ sequesters alkalinity in the deep ocean (as ‘regenerated alkalinity’), which raises the concentration of CO$_2$ in surface waters and pushes CO$_2$ into the atmosphere. In contrast, the Southern Ocean is dominated by Si-bearing biogenic opal (see Section 8.18.2.2), such that Southern Ocean overturning brings regenerated alkalinity to the surface, allows it to take up CO$_2$, and then sends it back into the interior as ‘preformed alkalinity.’ As a result, if more of the ocean is ventilated by the North Atlantic, the carbonate pump is also made more efficient, which cancels part of the CO$_2$ decline driven by the increased efficiency of the soft-tissue pump. Two processes decouple the carbonate pump from the soft-tissue pump and its preformed nutrient metric: (1) at the surface, the production ratio of CaCO$_3$ to organic matter varies greatly among regions and conditions and (2) at depth, sinking organic matter is rapidly respired during its passage through the water column (releasing sequestered carbon and regenerated nutrients) while most CaCO$_3$ sinks to the seabed before dissolving. One consequence of this decoupling is that slower deep-ocean ventilation more reliably strengthens the carbonate pump than does the soft-tissue pump, the latter being more sensitive to the surface ocean conditions during that ventilation process.
outlined earlier, the nutrient-depleted low-latitude surface water also imposes relatively low nutrient concentrations on the entire North Atlantic, such that NADW carries a relatively small burden of preformed nutrients (Figure 7(a); North Atlantic loop).

As discussed in Section 8.18.2.3, simply reducing the nutrient concentration in the high-latitude surface translates directly to a more efficient soft-tissue pump and thus reduces atmospheric CO₂. However, since the North Atlantic and the Southern Ocean carry greatly different concentrations of preformed nutrients, the soft-tissue pump can also become more efficient if more of the ocean volume is filled by NADW at the expense of AABW – without any change in surface nutrient status (Hain et al., 2010; Marinov et al., 2008; Sigman and Haug, 2003; Toggweiler et al., 2003b). Indeed, atmospheric CO₂ is extremely sensitive to this ‘ventilation volume’ mechanism: given the ~1µM difference in preformed phosphate between AABW and NADW, if only 10% ocean volume now filled by AABW is replaced by NADW, the increased efficiency of the soft-tissue pump would drive a 13–20 ppm decline in atmospheric CO₂ (see Section 8.18.2.2).

The geochemical mechanism behind the ventilation volume hypothesis, as outlined above, has been established theoretically (Ito and Follows, 2005; Primeau, 2005), and its effectiveness has been demonstrated in ocean models (Hain et al., 2010; Marinov et al., 2008). However, there is strong evidence that during the last ice age, the deepest ocean was dominantly filled from the South, not from the North Atlantic (e.g., Curry and Oppo, 2005; Duplessy et al., 1988; Lynch-Stieglitz et al., 2007; Marchitto et al., 2002). Taken at face value, this evidence would seem to suggest that NADW volume was replaced with AABW volume – the opposite direction of that needed to strengthen the soft-tissue pump and to reduce atmospheric CO₂.

One way out of this bind is to propose that AABW of the last ice age is actually largely composed of water last ventilated in the North Atlantic. The main water mass in the modern deep ocean, AABW, is indeed a mixture of waters last ventilated in the Southern Ocean and the North Atlantic surface (e.g., Broecker et al., 1998; DeVries and Primeau, 2011; Gebbie and Huybers, 2010; Primeau, 2005). In the ice age ocean, a smaller portion of newly forming AABW may have been derived from the Antarctic surface, with an equivalently greater portion of its volume being composed of North Atlantic-derived water that was entrained into the abyss within the ocean interior (Hain et al., 2010, 2011; Kwon et al., 2012). This hypothetical scenario is consistent with the deep carbon isotope data from the LGM (Hain et al., 2010, 2011; Kwon et al., 2012; see Section 8.18.3.2.1). Alternatively, the surface processes that produce new deep water in the Antarctic may not have allowed the waters to exchange CO₂ before sinking into the interior, for example, if there was pervasive sea ice cover preventing gas exchange (Stephens and Keeling, 2000). In both cases – more entrainment of NADW or less gas exchange (i.e., ventilation) in the Antarctic surface – physical processes exert a control on atmospheric CO₂ via their effect on the biological pump.

It appears that an expansion of North Atlantic ocean ventilation, at the expense of Southern Ocean ventilation, acts to increase the sequestration of regeneratived alkalinity at depth (Hain et al., 2010; Kwon et al., 2011). Biological productivity in the low-latitude surface ocean is associated with CaCO₃ export (i.e., coccolithophores and foraminifera), whereas Southern Ocean productivity is dominated by diatoms, which use dissolved silicic acid to build their opal shells. Given this difference, alkalinity is only sequestered by the action of the low-latitude/North Atlantic overturning loop (e.g., Brzeziński et al., 2002, 2003; Sarmiento et al., 2004; Figure 7(b)). Conversely, the ocean overturning in the Southern Ocean releases sequestered alkalinity from the ocean interior without causing significant CaCO₃ rain, converting regenerated alkalinity to preformed alkalinity (Figure 7(b)). As a result, a shift in ocean ventilation from Southern Ocean to North Atlantic dominated would tend to strengthen the carbonate pump (i.e., increase the deep sequestration of regenerated alkalinity) and thereby counter a portion of the decline in atmospheric CO₂ due to the simultaneous strengthening of the soft-tissue pump (Figure 7, North Atlantic loop). This appears to be an important constraint on the total CO₂ drawdown that can be driven by ocean ventilation changes alone (Hain et al., 2010; Kwon et al., 2011).

8.18.3 Tools

We have discussed the biological pump as a global phenomenon, the efficiency of which is set by regional processes and their relative impacts on the DIC and ALK sequestered in the global ocean interior. In our introduction to the tools used to reconstruct the biological pump, we begin with local surface biogeochemical conditions and then proceed to regional ocean interior processes, finishing with geochemical parameters that speak to global characteristics of the biological pump at a given time in Earth history. While one might argue that the last is most fundamental, a mechanistic understanding of changes in the ocean’s biological pump requires information on each of these scales.

8.18.3.1 Surface Ocean Biogeochemistry

While there are many aspects of surface ocean biogeochemical change that one might hope to reconstruct through time, the nutrient status of the high-latitude surface ocean is the most critical because it sets the concentration of unused, preformed nutrients for most of the ocean’s volume and it can be used to quantitatively derive the CO₂ effect of the soft-tissue pump (see Sections 8.18.2.2–8.18.2.3). Surface ocean productivity is less of a controlling variable – the biological pump can be more efficient even when productivity is lower – but is critically important to develop a mechanistic understanding of why surface nutrient changes may have occurred. In this regard, we must note that we are using the term ‘productivity’ loosely; our geochemical tools typically reconstruct export production rather than net primary production, and it is the former that most directly relates to the soft-tissue pump.

In regions where a deviation from major nutrient limitation is highly unlikely, in particular, the tropical and subtropical ocean characterized by perennial low nutrient status, export production is the major regional constraint that local paleoceanographic data can provide. In these regions, while reconstruction of export production is valuable for understanding
oceanographic change, it does not appreciably affect the soft-tissue pump, except in the case that global nutrient reservoirs have changed (Sigman and Haug, 2003). In contrast, the low-latitude export rate of CaCO$_3$ can affect the net effect of the biological pump because it drives the carbonate pump (e.g., Hain et al., 2010) and it affects the oceanic input/output budget of CaCO$_3$ (e.g., Sigman et al., 1998). In both cases, greater CaCO$_3$ rain raises atmospheric CO$_2$ (see Sections 8.18.2.1–8.18.2.3). Similarly, the rate of opal rain is of interest because export production of organic matter associated with opal represents a foregone opportunity for the carbonate pump to sequester alkalinity at depth.

Finally, we limit ourselves to tools that are largely based on geochemical measurement. We refer the interested reader to Fischer and Wefer (1999) for additional information and references.

8.18.3.1.1 Nutrient Status

The measurable geochemical parameters currently available for addressing the nutrient status of the surface ocean include (1) the cadmium/calcium (Cd/Ca) ratio (Boyle, 1988a) and 13C/12C of planktonic (surface-dwelling) foraminiferal carbonate (Shackleton et al., 1983), which are intended to record the concentration of Cd and the 13C/12C of DIC in surface water; (2) the nitrogen isotopic composition of bulk sedimentary organic matter (Altabat and Francois, 1994a) and microfossil-bound organic matter (Ren et al., 2009; Shemesh et al., 1993; Sigman et al., 1999b), which may record the degree of nitrate utilization by phytoplankton in surface water; (3) the silicon isotopic composition (De La Rocha et al., 1997, 1998) and germanium/silicon ratio (Froelich and Andreae, 1981) of diatom microfossils, which may record the degree of silicate utilization in surface water; and (4) the carbon isotopic composition of organic matter in sediments (Rau et al., 1989) and diatom microfossils (Rosenthal et al., 2000a; Shemesh et al., 1993), which may record the aqueous CO$_2$ of surface water and/or the carbon uptake rate by phytoplankton.

The concentration of dissolved Cd is strongly correlated with the major nutrients (i.e., phosphate) throughout the global deep ocean, and the Cd/Ca ratio of benthic (seafloor-dwelling) foraminifera shells records the Cd concentration of seawater (Boyle, 1988a). As a result, benthic foraminiferal Cd/Ca measurements allow for the reconstruction of deep-ocean nutrient concentration gradients over glacial/interglacial cycles. Planktonic foraminiferal Cd/Ca measurements in surface waters provide an analogous approach to reconstruct surface ocean nutrient concentration, although this application has been less intensively used and studied.

A number of factors appear to complicate the link between planktonic foraminiferal Cd/Ca and surface nutrient concentrations in specific regions. First, temperature may have a major effect on the Cd/Ca ratio of planktonic foraminifera (Elderfield and Rickaby, 2000; Rickaby and Elderfield, 1999). Second, planktonic foraminiferal shell growth continues below the surface layer and probably integrates the Cd/Ca ratio of surface and shallow subsurface waters (Bauch et al., 1997; Kohfeld et al., 1996). This is of greatest concern in polar regions such as the Antarctic, where there are very sharp vertical gradients within the depth zone in which planktonic foraminiferal calcification occurs. Third, carbonate geochemistry on the deep seafloor may affect the Cd/Ca ratio of foraminifera preserved in deep-sea sediments (McCorkle et al., 1995; Van Geen et al., 1995).

Because of isotopic fractionation during carbon uptake by phytoplankton, there is a strong correlation between the 13C/12C of DIC and regenerated nutrient concentration in the global deep ocean; as a result, the 13C/12C of benthic foraminiferal fossils is a central tool in paleoceanography. The 13C/12C of planktonic foraminiferal calcite can also be useful in the surface ocean, as a tool to study the strength of the biological pump (Shackleton et al., 1983). However, the exchange of CO$_2$ with the atmosphere leads to a complicated relationship between the 13C/12C of DIC and the nutrient concentration in surface waters (Broecker and Maier-Reimer, 1992; Lynch-Stieglitz et al., 1995), such that even a perfect reconstruction of surface water 13C/12C would not provide direct information of surface ocean nutrient status. In addition, the 13C/12C of planktonic foraminiferal fossils found in surface sediments appears to be an imperfect recorder of the 13C/12C of DIC in modern surface waters, for a variety of reasons (Spero and Lea, 1993; Spero and Williams, 1988; Spero et al., 1997).

Finally, the same concerns about the calcification depth noted for Cd/Ca also apply to carbon isotopes or, for that matter, any geochemical signal involving the precipitation of planktonic foraminiferal calcite.

During nitrate assimilation, phytoplankton preferentially consume 15N-nitrate relative to 14N-nitrate (Granger et al., 2010; Needoba and Harrison, 2004; Needoba et al., 2004; Waser et al., 1998a,b), leaving the surface nitrate pool enriched in 15N (DiFiore et al., 2006, 2009). This results in a correlation between the 15N/14N ratio of organic N and the degree of nitrate utilization by phytoplankton in surface waters (Altabat and Francois, 1994a,b). There are uncertainties in the use of this correlation as the basis for paleoceanographic reconstruction of nutrient status, which include (1) the isotopic composition of deep-ocean nitrate through time (Kienast, 2000; Ren et al., 2012a), (2) temporal variations in the relationship between nitrate utilization and the nitrogen isotopes in the surface ocean (i.e., the ‘isotope effect’ of nitrate assimilation) (DiFiore et al., 2010), (3) the survival of the isotope signal of sinking organic matter into the sedimentary record (Lourey et al., 2003; Robinson et al., 2012), and (4) the potential for allochthonous N-bearing compounds to dilute/perturb/conceal the isotopic signature of organic N sinking from the surface (Kienast et al., 2005). The nitrogen isotope analysis of microfossil-bound organic matter (Brunelle et al., 2007; Ren et al., 2009; Robinson and Sigman, 2008; Sigman et al., 1999b) and of specific compound classes such as chlorophyll degradation products (Higgins et al., 2009, 2010; Sachs and Repeta, 1999) circumvents the effect of diagenesis (Robinson et al., 2005b, 2012) and the problem of allochthonous N inputs (Meckler et al., 2011). However, more work is needed to test the linkage of selective N pools such as microfossil-bound N to the nitrogen isotope ratio of the nitrate consumed in surface waters, the parameter that relates most directly to the degree of nitrate utilization in surface waters (Altabat and Francois, 1994a; Galbraith et al., 2008a,b; Horn et al., 2011; Ren et al., 2012b).
The isotopic composition of silicon in diatom opal has been investigated as a proxy for the degree of silicate utilization by diatoms, based on the fact that diatoms fractionate the Si isotopes \(^{18}\text{Si}\) and \(^{28}\text{Si}\) during uptake (e.g., Beucher et al., 2007; Cardinal et al., 2005; De La Rocha et al., 1997, 1998; Fripiat et al., 2011b). This application is analogous to the use of N isotopes to study nitrate utilization (e.g., De La Rocha, 2006), with important differences. On the one hand, the upper ocean cycle is arguably simpler for silica than for nutrients, with the silicon isotope system. On the other hand, there are very few regions of the surface ocean that maintain high dissolved silicate concentrations (Figure 6(c)). As a result, in regions of strong vertical silicate gradients, the link between silicate utilization and silicon isotopic composition is affected by mixing processes in surface and shallow subsurface waters (Fripiat et al., 2011a). In addition, isotope fractionation occurs during opal dissolution (Demarest et al., 2009) and this can affect the silicon isotopic composition of diatom opal and its preserved fraction in seafloor sediments (e.g., Fripiat et al., 2011b). An exciting new application of the silicon isotopes involves the use of sponge spicules to reconstruct silicate concentration (see Hendry et al., 2010, 2011; Wille et al., 2011), but this tool has not yet been applied to the nutrient conditions of the surface ocean.

The carbon isotopic composition of sedimentary organic matter was originally developed as a paleoceanographic proxy for the aqueous CO\(_2\) concentration of Southern Ocean surface water (Rau et al., 1989). The aqueous CO\(_2\) concentration is a nearly ideal constraint for understanding a region’s effect on the biological pump, as it would provide an indication of its tendency to release or absorb carbon dioxide. However, it has become clear that growth rate and related parameters are as important as the concentration of aqueous CO\(_2\) for setting the \(^{13}\text{C}/^{12}\text{C}\) of phytoplankton biomass and the sinking organic matter that it yields (Popp et al., 1998). In addition, the method of carbon acquisition by phytoplankton is also probably important for phytoplankton \(^{13}\text{C}/^{12}\text{C}\) in at least some environments (Keller and Morel, 1999). Thus, the \(^{13}\text{C}/^{12}\text{C}\) of organic carbon is a useful paleoceanographic constraint on nutrient status (Rosenthal et al., 2000a) but one that is currently difficult to interpret in isolation.

8.18.3.1.2 Export production

Export production, as defined earlier, is the flux of organic carbon (C\(_{\text{org}}\)) that sinks (or is mixed) out of the surface ocean and into the deep sea. While it is extremely difficult to imagine how paleoceanographic measurements can provide direct constraints on this highly specific parameter, approaches exist for the reconstruction of the flux of biogenic debris to the seafloor. To the degree that sinking biogenic debris has a predictable chemical composition and that its export out of the surface ocean is correlated with its rain rate to the seafloor, these approaches can provide insight into export production variations (Mueller and Suess, 1979; Ruhlemann et al., 1999; Sarnthein et al., 1988; but see Abellmann et al., 2006).

Only a very small fraction of the organic carbon exported out of the surface ocean accumulates in deep-sea sediments, with loss occurring both in the water column and at the seafloor. Moreover, various environmental conditions may influence the fraction of export production preserved in the sedimentary record. The mineral components of the biogenic rain (calcium carbonate, CaCO\(_3\); opal, SiO\(_2\)) do not represent a source of chemical energy to benthic organisms and thus may be preserved in a more predictable fashion in deep-sea sediments. Thus, paleoceanographers sometimes hope to reconstruct export production (the flux of C\(_{\text{org}}\) out of the surface ocean) from the biogenic rain of opal or carbonate to the seafloor (Ruhlemann et al., 1999). We know that systematic variations in the ratio of SiO\(_2\) or CaCO\(_3\) to C\(_{\text{org}}\) in export production do occur; so there are many cases where changes in the mineral flux can be interpreted either as a change in the rate of export production or as a change in the composition of biogenic rain. Despite these limitations, we are better off with this information than without it.

The most basic strategy to reconstruct the biogenic rain to the seafloor is to measure accumulation rate in the sediments. This approach is appropriate for materials that accumulate without loss in the sediments or that are preserved to a constant or predictable degree. For the biogenic components of interest, C\(_{\text{org}}\), SiO\(_2\), and CaCO\(_3\), the degree of preservation varies with diverse environmental variables, detracting from the usefulness of accumulation rate for the reconstruction of their rain to the seafloor. Nevertheless, because the environmental variables controlling preservation in the sediments can be linked to rain rate to the seafloor, accumulation rate can sometimes be a sound basis for at least the qualitative reconstruction of changes in some components of the biogenic rain. For instance, the fraction of the opal rain that is preserved in the sediment appears to be higher in opal-rich environments (Broecker and Peng, 1982). As a result, an observed increase in sedimentaryopal accumulation rate may have been partially due to an increase in preservation. However, an increase in opal rain (and thus diatom-driven export) would typically have been needed to increase the sedimentaryopal content in the first place.

If an age model can be developed for a deep-sea sediment core, then the accumulation histories of the various sediment components can be reconstructed. Assuming that the age model is correct, the main uncertainty in the reconstruction is then the potential for lateral sediment transport. Sediments, especially material such as clays, opal, and organic matter associated with the sediment fine fraction, can be winnowed from or focused to a given site on the seafloor, leading the sedimentary accumulation at that site to be less or greater than the rain of material through the water column to seafloor.

The geochemistry of radiogenic thorium provides a way to evaluate the effect of lateral sediment transport and related processes (Bacon, 1984; Bacon and Anderson, 1982; Bacon and Rossholt, 1982; Francois et al., 1990, 2004; Suman and Bacon, 1989; see Chapter 8.12). Thorium-230 (\(^{230}\text{Th}\)) is produced at a constant, well-known rate throughout the oceanic water column by the decay of dissolved uranium-234 (Chen et al., 1986). As \(^{230}\text{Th}\) is produced, it is almost completely scavenged onto particles at the site of its production (Anderson et al., 1983; Bacon and Anderson, 1982; Nozaki et al., 1987). As a result, the accumulation rate of \(^{230}\text{Th}\) in deep-sea sediments should match its integrated production in the overlying water column (Henderson and Anderson, 2003; Henderson et al., 1999; Siddall et al., 2008). If the
accumulation of 230Th over a time period, as defined by a sediment age model, is more or less than should have been produced in the overlying water column during that period, then sediment is being focused or winnowed, respectively.

230Th is also of great use as an independent constraint on the flux of biogenic material to the seafloor (Bacon, 1984; DeMasters, 2002; Francois et al., 2004; Suman and Bacon, 1989). Because the production rate of 230Th in the water column is essentially constant over space and time, its concentration in sinking particles is diluted in environments with a large biogenic flux to the seafloor, yielding lower sedimentary concentrations of 230Th in these environments.

The 230Th ‘constant flux tracer’ has become a broadly used tool in paleoceanography (Francois et al., 2004); however, the underlying assumption of immediate scavenging onto sinking particles continues to be questioned (Broecker, 2008; Lyle et al., 2005; Mangini and Diester-Haass, 1983; Scholten et al., 1990; Thomas et al., 2000; Walter et al., 2001). These authors argue that 230Th scavenging is incomplete in regions of low particle rain or strong currents, thereby allowing for some amount of lateral transport in solution to sites with greater biogenic rain. Another recently invigorated concern is that 234Th focusing overestimates lateral sediment transport because it is partitioned preferentially into the small size-class fraction of the sediments, which are most easily winnowed away and focused elsewhere (Chase et al., 2002; Geibert and Usbeck, 2004; Kretschmer et al., 2010, 2011; Singh et al., 2011; Thomson et al., 1993). However, this problem may be suppressed by the cohesive behavior of fine particles in marine settings (McGee et al., 2010). Overall, this continuing evaluation of the 230Th ‘constant flux tracer’ is a good illustration for how the quantitative interpretation of broadly used geochemical proxies is still being improved. A major international survey of trace elements and isotopes in the ocean currently underway (http://www.geotraces.org; Henderson et al., 2007) should help to resolve some of the outstanding questions.

One limitation on the use of 230Th is the radioactive decay of this isotope, which has a half-life of 75,000 years. With corrections for terrestrial sources, it is possible to measure the accumulation rate of the stable isotope 3He derived from interplanetary dust (Marcantonio et al., 1995). It appears that the 3He flux from space has been roughly constant since the last ice age (e.g., Winckler and Fischer, 2006). If so, deviations of 3He burial from this constant extraterrestrial 3He flux would be interpreted in terms of sediment focusing versus winnowing, much as with 230Th (Higgins et al., 2002; Marcantonio et al., 1996, 2001; McGee et al., 2010) but without an age limitation due to decay.

The flux of barium (Ba) to the seafloor is strongly related to the rain of organic matter out of the surface ocean (Dehairs et al., 1980, 1991; Dymond and Collier, 1996; Dymond et al., 1992; Francois et al., 1995; Hernandez-Sanchez et al., 2011; Paytan and Griffith, 2007; Paytan et al., 1996; Pfeifer et al., 2001; Pollard et al., 2009). Apparently, the oxidation of organic sulfur is the dominant process that produces microsites within sinking particles and living organisms that become supersaturated with respect to the mineral barite (BaSO$_4$) (see Hernandez-Sanchez et al., 2011 and references therein). On this basis, Ba accumulation has been investigated and applied as a measure of export production in the past, representing a more durable sedimentary signal of the C_{org} sinking flux than sedimentary C_{org} itself (Bains et al., 2000; Bonn et al., 1998; Dean et al., 1997; Dymond et al., 1992; Francois et al., 1995; Gingele et al., 1999; Nurnberg et al., 1997; Paytan et al., 1996; Rutsch et al., 1995). While debates continue on aspects of the biogenic Ba flux, some problems with preservation are broadly recognized. In sedimentary environments with low bottom water O$_2$ and/or high C_{org} rain rates, active sulfate reduction in the shallow sediments can cause barite to dissolve (Dymond et al., 1992; Eagle et al., 2003; Paytan and Kastner, 1996). In addition, there is some level of barite dissolution under all conditions (Paytan and Kastner, 1996); if the biogenic barium flux is low, a large fraction of it can dissolve at the seafloor. Thus, Ba accumulation studies appear to be most applicable to environments of intermediate productivity.

The rapidly growing field of organic geochemistry promises new approaches for the study of biological productivity in the past. By studying specific chemical components – biomarkers – of the organic matter found in marine sediments, uncertainties associated with carbon source can be removed, and a richer understanding of past surface conditions can be developed (e.g., Hinrichs et al., 1999; Martinez et al., 1996). For example, alkenone lipids produced by haptophyte algae (Conte et al., 1994a,b; Marlowe et al., 1984) are relatively resistant to biodegradation and sedimentary diagenesis (Cleaveland and Herbert, 2009; Reckha and Maxwell, 1988; Sun and Wakeham, 1994), and thus their rate of accumulation on the seafloor may track the productivity of these organisms in the surface ocean (see Chapter 8.15). There are a growing number of reconstructions of ocean productivity changes over the recent ice age cycles and beyond using these compounds (Bolton et al., 2010, 2011; Caissie et al., 2010; Lawrence et al., 2006; Liu and Herbert, 2004; Martinez-Garcia et al., 2009; McClymont et al., 2005).

8.18.3.2 Ocean Ventilation

Different high-latitude ocean regions impose different concentrations of preformed nutrients on the ocean interior, and thus changes in their relative volumetric importance in ventilating the ocean interior affect CO$_2$ through the soft-tissue pump (see Section 8.18.2.4). Therefore, reconstructions of changes in ocean overturning and mixing also attest to the efficiency of the global soft-tissue pump. The major water masses in the modern ocean are mixtures of water last ventilated mostly in the Southern Ocean and the North Atlantic. The ‘ventilation volumes’ for these two surface ocean regions are thus arguably the most critical to the efficiency of the soft-tissue pump. At the same time, we need to know the absolute rates of ocean overturning to develop a mechanistic understanding for both biogeochemical changes at the surface and ventilation volume changes at depth. In addition, the rate of deep-ocean ventilation (i.e., the age of deep waters) directly affects the strength of the carbonate pump (see Section 8.18.2.3). Below, we briefly describe approaches that have been developed to reconstruct specifically where the ocean was last ventilated and the rates of ocean overturning during the ice age.

8.18.3.2.1 Water mass distribution

The distribution of the main water masses at the LGM appears to be reflected in the distribution of carbon isotopes, but the C isotopes are not a conservative tracer of interior water masses,
as described below. During the LGM, the DIC associated with NADW was more enriched in ^{13}C over ^{12}C (high $\delta^{13}C$) relative to AABW (low $\delta^{13}C$) (e.g., Curry and Oppo, 2005; Duplessy et al., 1988; Lynch-Stieglitz et al., 2007). This isotopic contrast has been reconstructed from the CaCO$_3$ shells of benthic foraminifera. Based on a large body of such data, it is accepted that the volume of AABW expanded to dominate the global abyssal ocean while NADW was displaced upward in the water column so as not directly to fill the deepest ocean. The isotopic contrast between the upper ocean and the abyss records in itself the biological sequestration of 13C-depleted C$_{org}$ at depth. Hence, as newly ventilated water descends from the surface, its $\delta^{13}C$ is being continuously modified by the respiration of organic matter that adds low $\delta^{13}C$ carbon to the DIC pool. In that sense, as North Atlantic-ventilated water ages in the ocean interior, its $\delta^{13}C$ declines toward the $\delta^{13}C$ of AABW, such that the information as to where the water was last ventilated is eventually lost. Indeed, one plausible interpretation of the glacial Atlantic $\delta^{13}C$ data is that more of the interior of the ice age ocean was ventilated from the North Atlantic than occurs at present (Kwon et al., 2012).

The Cd/Ca ratio also recorded in the shells of benthic foraminifera has the potential to correct for the effect of respiration on foraminiferal $\delta^{13}C$. As described in Section 8.18.3.1.1, Cd is correlated with the distribution of phosphate in the modern ocean, which is also released during respiration (Boyle, 1988a; but also see Elderfield and Rickaby, 2000). Thus, foraminiferal Cd/Ca can be used to constrain the amount of respiration that a given water parcel had experienced and correct the measured $\delta^{13}C$ for the low-$\delta^{13}C$ respired carbon (Broecker and Maier-Reimer, 1992; Charles et al., 1993; Lynch-Stieglitz et al., 1995). The notion is that this regeneration-corrected $\delta^{13}C$ (e.g., $\delta^{13}C_{\text{Ca}}$, Lynch-Stieglitz et al., 1995) does not change after water descends from the surface into the ocean interior, making it suitable for reconstructing the mixing of North Atlantic-ventilated and Southern Ocean-ventilated water in the ocean interior. However, the end-member $\delta^{13}C_{\text{Ca}}$ of Southern Ocean-ventilated water during the LGM that is needed to calculate southern versus northern ventilation is poorly constrained (e.g., Marchitto and Broecker, 2006) because of a lack of foraminifera in Antarctic sediments, and because seafloor respiration in highly productive regions may also decouple the benthic foraminiferal $\delta^{13}C$ from the $\delta^{13}C$ of the DIC of the overlying bottom water (Mackensen et al., 1993).

The distribution of neodymium isotopes (143Nd, 144Nd) in the ocean, as recorded in Fe–Mn coatings that develop on particle surfaces in the ocean interior, presents a powerful tool for reconstructing the basin-to-basin ocean overturning in the past (Albarede and Goldstein, 1992; Albarede et al., 1997; Pietrowski et al., 2004, 2008; Rutberg et al., 2000). The weathering of young volcanic rocks along the active continental margins of the Pacific imposes a high 143Nd/144Nd ratio on Pacific waters, while weathering of the old cratons straddling the passive continental margins of the Atlantic imposes a low 143Nd/144Nd ratio on Atlantic waters. Hence, changes in the 143Nd/144Nd distribution track the exchange and mixing of waters among these basins (see Chapter 8.17). However, since these source signals do not derive from the regions of surface ventilation, it is unlikely that changes in ocean ventilation can be constrained by reconstructing 143Nd/144Nd changes.

Temperature and salinity of water are not significantly affected by chemical processes in the interior ocean and can thus be used to infer surface source regions and the mixing of ocean interior waters. The $\delta^{18}O$ of benthic foraminiferal calcite is closely related to both temperature and salinity of the water from which it was precipitated, such that downcore records in some regions speak directly to the density of that water (Lynch-Stieglitz et al., 1999a,b). The $\delta^{18}O$-density relationship is temperature dependent and varies among different water masses (Zahn and Mix, 1991), but even if not taken as a density tracer, the foraminiferal $\delta^{18}O$ can still be used to trace the mixing of water masses in the interior (e.g., Herguera et al., 1992; Kallel et al., 1988; Lund et al., 2011). However, it is not clear yet whether it is feasible to quantify the relative importance of northern versus southern ventilation of the ice age ocean based on foraminiferal $\delta^{18}O$, mainly because this parameter cannot distinguish between warm/salty versus cold/fresh waters (e.g., Dansgaard and Tauber, 1969; Fairbanks and Matthews, 1978; Shackleton, 1967). Efforts to independently reconstruct these fundamental physical parameters, either through deep pore waters (Adkins and Schrag, 2001; Adkins et al., 2002; Paul et al., 2001; Schrag and DePaolo, 1993; Schrag et al., 1996, 2002) or through the Mg/Ca of benthic foraminiferal calcite (e.g., Elderfield and Ganssen, 2000; Lea et al., 2000; Rosenthal et al., 2000b), may thus be required to deconvolve the ocean ventilation signal.

8.18.3.2.2 Rates of ocean overturning and ventilation

The rate of ocean overturning is a critical control on the rate of gross nutrient supply from the subsurface to the surface ocean, and the local efficiency of the soft-tissue pump directly corresponds to the fraction of the gross nutrient supply that is converted to organic matter and exported to depth. Reconstructing the rates of ice age ocean circulation and mixing is thus central to explaining the history of atmospheric CO$_2$. Below, we briefly discuss two geochemical proxies that are used to address the dynamics of ocean overturning during the ice ages.

The radioactive isotope 14C is produced by cosmic ray spallation in the atmosphere, mixes with the stable carbon isotopes, and decays with a half-life of 5730 years. The vast majority of 14C resides in the ocean's DIC pool, with only \sim10% in the atmosphere and terrestrial biosphere, such that \sim90% of the 14C decay occurs in the ocean (ignoring the recent addition of 14C from nuclear activities). Because the ocean hosts only 14C decay, the 14C/C of the ocean is less than that of the atmosphere, and the relative depletion of the ocean is a measure for the rate of bulk ocean ventilation. Reconstructions of atmospheric 14C/C exist for the last 50 000 years (Reimer et al., 2009 and references therein), well into the last ice age, whereas independent reconstructions of the global 14C production rate only agree for the last 20 000 years (Frank et al., 1997; Laj et al., 2002; Muscheler et al., 2004), leaving substantial uncertainty regarding the global 14C inventory (and thus the whole ocean 14C/C) before about 10 000 years ago (e.g., Broecker and Barker, 2007). The 14C/C of CaCO$_3$ records the DIC 14C/C of the water the carbonate was precipitated from, but most of the initial 14C of ice age carbonate samples has decayed. In order to correct for this decay, an independent constraint on the age of the sample is needed. In practice, this is done by comparing the 14C/C of benthic and planktonic
foraminifera from the same stratigraphic level (a proxy for the
14C depletion of bottom waters versus surface waters) or by
combined 14C/C measurement and uranium–thorium dating
on fossil deep-sea corals (e.g., Robinson et al., 2005a).
Taking into account a number of corrections and additional consider-
ations (Adkins and Boyle, 1997; Stuiver and Polach, 1977), the
initial 14C/C depletion of DIC relative to the contemporaneous
atmosphere (or surface ocean) can be interpreted as the aver-
age time that has passed as the water was last at the surface –
the apparent 14C ventilation age. The modern deep ocean is
characterized by apparent ventilation ages of a few 100 years in
the Atlantic to almost 2000 years in the North Pacific, record-
ing mainly the path and rate of ocean overturning (e.g.,
Broecker et al., 1988; Duplessy et al., 1989, 1991; Shackleton
et al., 1988). However, surface water is also depleted in 14C/C
relative to the atmosphere because the exchange of carbon
isotopes across the air–sea interface is slow (see Butzin et al.,
2005; Fairbanks et al., 2005; Stuiver and Brazzunas, 1993).
This ‘reservoir age’ of surface waters can range between a few hun-
dred years in the low-latitude surface and the North Atlantic to
significantly more than 1000 years in the Southern Ocean
surface. The deconvolution of inherent surface reservoir age
and 14C decay that occurred since the water left the surface is
the main challenge for interpreting apparent ventilation ages;
a greater fractional 14C/C depletion of ocean interior water can
result from more sluggish circulation and/or a greater surface
reservoir age (e.g., Schmittner, 2003).
In recent years, the 231Pa/230Th ratio of marine sediments
has received attention as a recorder of deepwater flow (e.g.,
Gherardi et al., 2005, 2009; McManus et al., 2004; Negre et al.,
2010; but see also Anderson et al., 2009b). This approach is
based on the different potentials for 231Pa and 230Th to be
carried by ocean circulation before being scavenged by sinking
particles and delivered to the sediments. As the central example
in the modern ocean, North Atlantic sediments have a low
231Pa/230Th ratio, apparently because NADW carries 231Pa
(but not the rapidly scavenged 230Th) southward out of the
basin (Yu et al., 1996). A comprehensive treatment is provided
by Anderson in this volume (see Chapter 8.9).

8.18.3.3 Integrative Constraints on the Biological Pump
If our goal is to explain the global net effect of ocean biology on
the carbon cycle, we must also search for more integrative con-
straints on the biological pump. This is possible because the
atmosphere, surface ocean, and deep ocean, while being distinct
from one another, are each relatively homogeneous geochemical
reservoirs. There are a number of global-scale geochemical
parameters that may provide important constraints on
the biological pump; we describe several of these below.

8.18.3.3.1 Carbon isotope distribution of the ocean and
atmosphere
As described earlier, the biological pump tends to sequester
12C-rich carbon in the ocean interior. All else being equal, the
stronger the global biological pump, the higher will be the
13C/12C of DIC in the surface ocean and of carbon dioxide in
the atmosphere. Broecker (1982a,b) and Shackleton et al.
(1983) compared sediment core records of the 13C/12C of
calcite precipitated by planktonic and benthic foraminifera,
the goal being to reconstruct the 13C/12C difference in DIC
between the surface and deep oceans, a measure of the strength
of the global ocean’s biological pump. Indeed, this work was
the first suggestion that the biological pump was stronger
during ice ages, thus potentially explaining the lower CO2
levels of glacial times. Our view of these results is now more
complicated (e.g., Spero et al., 1997); however, the basic infer-
ence remains defensible (Hofmann et al., 1999). Complementary
records of the 13C/12C ratio of atmospheric CO2, mainly
based on air trapped in Antarctic ice cores, have been devel-
oped back into the last ice age and across the penultimate
deglaciation (Elsig et al., 2009; Francey et al., 1999; Indermühle
et al., 1999; Leuenberger et al., 1992; Lourantou et al., 2010a,b;
Marino and McElroy, 1991; Smith et al., 1999). There are a
number of additional modifiers of the 13C/12C of atmospheric
CO2, such as the temperature of gas exchange, and all of
the ocean/atmosphere inorganic carbon would respond to
changes in the sequestration of carbon by the terrestrial bio-
sphere (Curry et al., 1988; Shackleton, 1977). Nevertheless, the
reconstructed decline of 13C/12C of atmospheric CO2 during
deglacial CO2 rise is consistent with the biological pump
hypothesis for glacial/interglacial CO2 change (Lourantou et al.,
2010a,b; Smith et al., 1999).

8.18.3.3.2 Deep-ocean oxygen content
The atmosphere/ocean partitioning of diatomic oxygen (O2) is
a potentially important constraint on the strength of the
biological pump. The rain of organic matter from the surface
drives respiration at depth, thereby consuming O2 in a stoichio-
metric proportion relative to the sequestration of carbon.
Surface waters are near O2 saturation with respect to the large
(and therefore relatively stable) atmospheric O2 reservoir. Thus,
the concentration of O2 in the ocean interior is equal to the
initial O2 concentration that the water carried when leaving the
surface (which can be estimated from water temperature)
minus the amount of O2 consumed by respiration in the
water since it left the surface. Because regenerated nutrients
are also released during this respiration, the amount of O2
consumed in an ocean interior water parcel is proportional to
its concentration of regenerated nutrients, which we have al-
ready identified as a fundamental metric of the soft-tissue
pump. A decrease in atmospheric CO2 due to enhanced carbon
sequestration by the soft-tissue pump should, therefore,
be accompanied by a decrease in the O2 content of the ocean
interior.

The concentration of dissolved O2 in the ocean interior
has long been a target for paleoceanographic reconstruction,
while the change in atmospheric O2 content would be minute
and thus difficult to measure. Sediments underlying waters
with nearly no O2 tend to lack burrowing organisms, so that
sediments in these regions are undisturbed by bioturbation
and can be laminated; this is perhaps our most reliable paleo-
ceanographic indicator of deepwater anoxia (i.e., lack of O2).
Arguments have been made for surface area normalized sedi-
mentary organic carbon content as an index of O2 content in
some settings (Keil and Cowie, 1999). It remains to be seen
whether this is complicated by the potential for changes in
the rain rate of organic matter to the sediments. There are a
number of redox-sensitive metals, the accumulation of which gives
information on the O2 content of the pore water in shallow
sediments (Anderson et al., 1989; Crusius and Thomson, 2000; Crusius et al., 1996). The most widely used of these is uranium, the sedimentary concentration of which rises as bottom-water O2 declines (Anderson, 1987; see also Boit et al., 2012 for a technique based on uranium in foraminiferal coatings). Unfortunately, the O2 content of the sediment pore waters can vary due to organic matter supply to the sediments as well as the O2 content of the bottom water bathing the seafloor (McManus et al., 2005, 2006), so that these two parameters can be difficult to separate (a situation that is analogous to that for sedimentary organic carbon content). Nevertheless, in a number of studies based on authigenic uranium, ice age increases in uranium content were observed despite the lack of substantial productivity change or in the face of productivity declines (Bradtmiller et al., 2010; Francois et al., 1997; Galbraith et al., 2007; Jaccard et al., 2009). These cases make a strong argument for reduced O2 in much of the deep ocean during the last ice age, consistent with a role for soft-tissue pump changes in glacial/interglacial CO2 change (Jaccard and Galbraith, 2012). While interesting data and arguments have been put forward in support of various approaches (Hastings et al., 1996; Russell et al., 1996), a globally integrative measure of ocean dissolved O2 content is lacking.

In the Arabian Sea and the eastern Pacific, where water column suboxia (i.e., severe oxygen depletion but not complete anoxia) is reached today, the nitrogen isotopes have been used to diagnose changes in upper ocean O2 concentration. Suboxic zones in the upper water column host denitrification, a biological process that preferentially removes 15N-rich nitrate, leaving the residual nitrate of the shallow subsurface water column elevated in 15N/14N (Liu and Kaplan, 1989). When this nitrate is upwellled or mixed into the overlying surface ocean, it yields biomass and sinking N with a high 15N/14N, which is subsequently buried in the sediments (Altabet et al., 1999a). Partly based on this approach, it appears that during the last ice age, oxygen levels were higher in the upper water column in regions where oxygen is low today, such that each of the major ocean suboxic zones became more oxygenated during the last ice age (Altabet et al., 1995, 1999b, 2002; De Pol-Holz et al., 2006, 2009, 2010; Galbraith et al., 2004; Ganeshram et al., 1995, 2002). As these suboxic zones are found at mid-depth, these data have led to the view that the ocean’s oxygen deficit due to respiration shifted into the deeper ocean during the last ice age (e.g., Sigman and Boyle, 2000).

Initial model results (e.g., Knox and McElroy, 1984; Sarmiento et al., 1988; Toggweiler and Sarmiento, 1985) suggested that a biological pump mechanism for the glacial/interglacial CO2 change would have rendered the ocean subsurface so O2 deficient as to prevent the presence of burrowing organisms and oxic respiration over large expanses of the seafloor, which should leave some tell-tale signs in the sediment record. However, these models did not consider the potential of depth changes in the burden of regenerated carbon (Boyle, 1988c; Jaccard et al., 2009) or the potential of changes in CaCO3 to magnify the CO2 effect of the soft-tissue pump (e.g., Hain et al., 2010). A recent synthesis of the ocean’s O2 changes from the LGM through the deglaciation (Jaccard and Galbraith, 2012) concluded that (1) the deglacial oxygenation of the deep-ocean tracks the release of sequestered carbon and (2) the apparent deglacial expansion of suboxic zones in the upper ocean was related to an overall shoaling of the ocean’s nutrient inventory that helped partition respired carbon, and thus respiration-driven oxygen depletion, from the deep ocean to the upper ocean. Indeed, this scenario is consistent with conclusions reached based on the δ13C and Cd/Ca of benthic foraminifera (Berger and Lange, 1998; Boyle, 1988c; Herguera et al., 1992; Marchitto et al., 1998). In that sense, the glacial deepening of nutrients may have helped to prevent upper ocean anoxia by focusing carbon sequestration in deep waters which are currently relatively rich in O2 (Boyle, 1988c).

8.18.3.3 Carbon chemistry and boron

As outlined earlier, the fidelity of atmospheric CO2 fluctuations on millennial timescales (e.g., Ahn and Brook, 2008; Indermühle et al., 2000; Nefel et al., 1988) and the rapidity of deglacial CO2 rise (e.g., Monnin et al., 2001) are strong evidence that much of the CO2 change was driven by carbon redistributions within the atmosphere/ocean/terrestrial biosphere system. Therefore, perhaps the most direct evidence for the role of the biological pump in controlling these CO2 changes may arise from reconstructions of ocean carbon chemistry. The classical approach involves the assessment of sedimentary CaCO3 preservation versus dissolution (referring to either bulk sediment CaCO3 or individual shells of specific organisms), which is influenced by the CaCO3 saturation state of the overlying bottom water (e.g., Archer, 1991; Archer et al., 1989; Emerson and Archer, 1990; Emerson and Bender, 1981; Jahnke et al., 1994; see Section 8.18.2.1). In this section, we briefly outline more recently developed methods – based on the incorporation of boron into the carbonate shells of foraminifera – to reconstruct ocean carbon chemistry.

Appreciable concentrations of boron (10B, 11B) are dissolved in ocean waters in the form of deprotonated boric acid, mainly B(OH)3 and B(OH)4−, with their ratio depending on pH. In solution, B(OH)4− has a substantially lower 11B/10B than B(OH)3 (Kakihana and Kotaka, 1977; Kakihana et al., 1977, 1981; Klochko et al., 2006). It has been suggested that only the charged species, B(OH)4−, is incorporated into foraminiferal CaCO3 such that pH can be calculated from measured foraminiferal 11B/10B, given knowledge of seawater 11B/10B (Hemming and Hanson, 1992; Sanyal et al., 1995, 1996, 2000). There is some concern about this approach due to (1) uncertainties about the magnitude of isotope fractionation among the boron species (Byrne et al., 2006; Klochko et al., 2006; Liu and Tossell, 2005; Pagani et al., 2005; Sanchez-Valle et al., 2005; Zeebe, 2005), (2) the mechanism of boron incorporation into carbonates (Allen et al., 2011a; Hemming and Hanson, 1992; Hemming et al., 1995; Klochko et al., 2009; Rae et al., 2011; Tossell, 2006), and (3) species differences and vital effects (e.g., Honisch and Hemming, 2004; Honisch et al., 2004). However, there is good evidence for its utility to reconstruct ocean pH (e.g., Allen et al., 2011a; Foster, 2008; Honisch et al., 2007; Rae et al., 2011).

Yu and Elderfield (2007) showed that the B/Ca ratio of benthic foraminifera could be used to reconstruct the carbonate ion (CO32−) concentration in the ocean interior. This new approach is based on empirical calibrations, and a number of caveats have already been pointed out (Foster, 2008; Rae et al., 2011; Yu and Elderfield, 2007; Yu et al., 2007). Nonetheless,
the direct comparison of the independent 11B/10B and B/Ca approaches has yielded striking agreement (Yu et al., 2010a), arguably providing among the strongest support for both of these approaches.

Overall, the boron-based approaches hold the promise to reconstruct the redistribution of carbon and alkalinity over the ice age cycles. While one part of the reconstructed signal can be attributed to changes in the biological pump, another important part is due to temporary imbalances in the CaCO$_3$ budget of the ocean. Upon deglaciation, the release of biologically sequestered carbon from the deep-sea interior should have raised deep-ocean CO$_3^{2-}$ (eqn [3b]), pH (eqn [3c]), and CaCO$_3$ saturation state (Ω; eqn [4]) so as to promote the sea floor burial of CaCO$_3$ (e.g., Sigman et al., 2010; see Section 8.18.2.1). As more CaCO$_3$ was buried than dissolved CaCO$_3$ was supplied by from rivers, the ocean should have lost alkalinity and DIC in a 2:1 ratio, which would have raised atmospheric CO$_2$ (eqn [3d]) and progressively lowered CO$_2^{2-}$ and Ω until the ocean’s CaCO$_3$ was supplied by budget came back into balance. This sequence of events was conceived based on records of CaCO$_3$ preservation/dissolution and carbon cycle modeling (e.g., Broecker, 1982a,b; Broecker and Peng, 1987), and it appears to be borne out by deglacial B/Ca records (Yu et al., 2010b).

8.18.4 Observations

Many specific hypotheses have been put forward for the origin of ice age CO$_2$ drawdown, variously involving specific phenomena such as sea ice, biological productivity, nutrient availability and utilization, ocean circulation, ocean mixing, shifting winds, carbon sequestration, and whole ocean alkalinity changes. One of the goals of the earlier part of this chapter and the previous version (Sigman and Haug, 2003) was to describe the core geochemical mechanisms for CO$_2$ drawdown that most of these hypotheses share. In this section, we take a more personal tack and focus on a set of regions and processes that we favor as being involved in the ice age CO$_2$ drawdown, or part of it: (1) the Polar Antarctic Zone of the Southern Ocean and its ventilation of the deep ocean, (2) the Subantarctic Zone of the Southern Ocean and its biological response to dust fluxes, and (3) the North Atlantic and its impact on the depth and regions of the ocean interior where regenerated carbon is stored. We suggest below that the glacial progression from warm, high-CO$_2$ interglacial periods to peak glacial conditions with low CO$_2$ resulted from the superposition of regional changes that have distinct timings, yielding the multiple apparently stable levels of atmospheric CO$_2$ that have occurred over the last 800 000 years (Hain et al., 2010).

8.18.4.1 800 000 Year Perspective

Atmospheric CO$_2$ has been reconstructed from ice cores with great fidelity for the last 800 000 years (Figure 8(a); Lüthi et al., 2008 and references therein). The reconstructed CO$_2$ changes track the progression of global glaciation and cooling (Figure 8(b); Lisiecki and Raymo, 2005). While very similar in its overall temporal pattern, the record of Antarctic air temperature derived from ice cores (Figure 8(e); Jouzel et al., 2007) exhibits the greatest part of the warming and cooling immediately at ice age terminations and initial glacial inceptions, respectively. This distinct timing of Antarctic temperature change appears to be reflected in the sediments deposited in the Polar Antarctic Zone of the Southern Ocean (Figure 8(f); Hodell et al., 2002; see also Kemp et al., 2010), the changes in which suggest high biological productivity during the brief interglacial stages (shaded red in Figure 8) and lower productivity otherwise. Taken at face value, Antarctic changes occurred early in the glacial progression associated with the initial decline in atmospheric CO$_2$ from high interglacial values (Hain et al., 2010). The evidence for low Polar Antarctic productivity during the LGM (e.g., Francois et al., 1997; Frank et al., 2000; Kohfeld et al., 2005; Kumar et al., 1993; Mortlock et al., 1991) in the face of low CO$_2$ argues for greater fractional utilization of a reduced nutrient supply to the surface (i.e., the ‘Antarctic stratification’ hypothesis, Francois et al., 1997; see also Section 8.18.2.3) and/or expanded sea ice cover that prevents the venting of CO$_2$ from supersaturated surface waters (i.e., the ‘sea ice’ hypothesis, Stephens and Keeling, 2000). There is evidence for and against LGM nutrient concentrations in the Polar Antarctic (Crosta and Shemesh, 2002; De La Rocha et al., 1998; Elderfield and Rickaby, 2000; Francois et al., 1997; Keigwin and Boyle, 1989; Robinson and Sigman, 2008; Robinson et al., 2004; Sigman et al., 1999a,b). There are also hybrid scenarios in which the expansion of sea ice cover and Antarctic density stratification interact on a spatial basis to reduce CO$_2$ evasion through the Antarctic surface (Sigman and Haug, 2003; Stephens and Keeling, 2000). As the available data set of glacial Southern Ocean sea ice cover grows (e.g., Allen et al., 2011b; CLIMAP, 1981; Collins et al., 2012; Crosta et al., 2004; Gersonde et al., 2003, 2005; Stickley et al., 2003), a more detailed comparison with the CO$_2$ and temperature records will become possible. In any case, the CO$_2$ effects of increased Antarctic sea ice cover, reduced Antarctic overturning, and increased nutrient drawdown are not additive, such that the combination of the stratification and sea ice hypotheses is expected to yield only insignificantly more CO$_2$ drawdown than either mechanism in isolation (Hain et al., 2010).

The subpolar North Pacific experienced changes in productivity and surface nutrient status very similar to those inferred for the Antarctic (e.g., for productivity and/or nutrients, see Brunelle et al., 2007, 2010; Galbraith et al., 2007, 2008a,b; Gebhardt et al., 2008; Haug et al., 2005; Jaccard et al., 2005; Kienast et al., 2004; Okazaki et al., 2005a,b; Seki et al., 2004; e.g., for sea ice, Katsuki and Takahashi, 2005; Sakamoto et al., 2005). Indeed, the North Pacific sediment records, which typically have adequate foraminifera for relative dating by oxygen isotope correlation, may provide an analog for changes in the Antarctic, where the sediments often lack foraminifera and are generally less amenable to paleoceanographic reconstructions (Haug and Sigman, 2009; Sigman et al., 2010). While the similarities are remarkable, they do not extend to the potential of these two regions to affect atmospheric CO$_2$: unlike the Antarctic, the modern North Pacific ventilates only a modest fraction of the ocean volume (e.g., DeVries and Primeau, 2011; Gebbie and Huybers, 2010) and thus does not possess much leverage on the global soft-tissue pump (Hain et al., 2010; see Section 8.18.2.4).
Figure 8 A selection of marine and ice core records that provide a synoptic view of the relationship between ocean overturning and productivity over the late Pleistocene ice age cycles (i.e., the last ~800 000 years). The vertical shaded bars indicate warm interglacial stages (red) and cold stages with lowest atmospheric CO2 concentration (blue). For a detailed description, see Section 8.18.4.1. The sources and particulars of the records are as follows: (a) CO2: a compilation by Lüthi et al. (2008); (b) benthic foraminiferal δ18O: a global compilation by Lisiecki and Raymo (2005) (higher values correspond to greater volumes of continental ice sheets and colder deep-ocean temperature); (c) benthic foraminiferal δ13C records (all Cibicidoides spp.): (1) shallow northern North Atlantic (solid gray line: ODP Site 982 at 1145 m depth, Venz et al., 1999; dashed gray line: DSDP Site 552 at 2311 m depth, Sarthou et al., 1994), (2) the deep North Atlantic (solid green line: DSDP Site 607 at 3427 m depth, Ruddiman et al., 1989) compiled from Boyle and Keigwin, 1985; Mix and Fairbanks, 1985 and Raymo et al., 1989), and (3) the abyssal southern South Atlantic (solid black line: ODP Site 1089 at 4620 m depth, Holdell et al., 2003; dashed black line ODP Site 1090 at 3702 m depth, Holdell et al., 2003) – the position of the green curve relative to northern sourced (gray) and southern sourced (black) waters speaks to the geometry of Atlantic overturning through time; (d) Martinez-Garcia et al. (2009) records of Subantarctic iron-bearing dust supply (iron mass accumulation rate, MAR) and haptophyte productivity (alkenone MAR) at ODP Site 1090; (e) Jouzel et al.'s (2007) record of temperature change at the EPICA Dome C ice core drill site; and (f) Hodell et al.’s (2002) record of sediment reflectance (i.e., sediment color) at ODP Site 1094 – a rough metric of Antarctic productivity (bright/reflective layers correspond to greater opal content and thus higher diatom productivity). The age models for DSDP Site 607 and ODP Site 982 were tuned (between 250 and 630 ky) based on comparison of benthic foraminiferal δ13C to ODP Site 1089 (solid black line in panel (c)) and the global δ18O stack (panel (b)).
and thus further lowering CO₂ (Hain et al., 2010). Subantarctic iron fertilization also causes a permanent decline in CaCO₃ rain, further increasing ocean alkalinity and lowering CO₂ (Hain et al., 2010). Finally, changes in silicate consumption and transport may have further extended the capacity for the Subantarctic to raise ocean alkalinity, through the region’s influence on low-latitude CaCO₃ export (e.g., Brzezinski et al., 2002; Matsumoto and Sarmiento, 2008). In short, the Subantarctic has a far greater impact on CO₂ than if solely measured from the preformed/regenerated nutrient metric of the soft-tissue pump (see Section 8.18.2.2). Overall, model simulations suggest that iron fertilization in the Subantarctic Zone of the Southern Ocean can explain up to 35–40 ppm of the atmospheric CO₂ drawdown during the brief episodes of enhanced dust supply (Figure 8(d)), including the less certain downstream effects on low-latitude CaCO₃ production and sea floor burial (Hain et al., 2010; Watson et al., 2000).

Finally, a strong case has been made for a major reorganization of water masses in the Atlantic basin between the LGM and the current interglacial (e.g., Curry and Oppo, 2005; Duplessy et al., 1988; Lynch-Stieglitz et al., 2007; Marchitto and Broecker, 2006; Sarthou et al., 1994). During the LGM, NADW shoaled – prompting the name Glacial North Atlantic Intermediate Water (GNAIW) – while Southern Component Water (SCW) penetrated further northward into the deep North Atlantic. Downcore records of benthic foraminiferal ¹³C/¹²C ratios (expressed in δ¹³C notation) from the deep North Atlantic and its plausible upstream contributors (NADW/GNAIW vs. SCW) clearly show that Atlantic water-mass reorganization has occurred repeatedly over the last 800 000 years (Figure 8(c)). For much of the time, the δ¹³C of the deep North Atlantic (green in Figure 8(c); Ocean Drilling Program (ODP) Site 607) was essentially identical to the δ¹³C of North Atlantic sourced water (gray in Figure 8(c); ODP Site 982 and Deep Sea Drilling Project Site 552), indicating a water-mass distribution similar to the modern ocean. However, during the coldest stages of the ice ages (blue shading in Figure 8), deep North Atlantic δ¹³C decreased toward that of SCW (black in Figure 8(c); ODP Sites 1089 and 1090), away from the GNAIW δ¹³C.

This change in deep Atlantic hydrography could either act to raise atmospheric CO₂ during glacial or cause CO₂ drawdown, depending largely on the fraction of SCW that last ventilated in the North Atlantic versus the Polar Antarctic (the ‘ventilation volume’ hypothesis, see Section 8.18.2.4). If the expanded SCW was actually composed of GNAIW that had not been reventilated in the Southern Ocean (e.g., due to Antarctic stratification), then the SCW expansion into the deep North Atlantic would help to explain the coeval decline of atmospheric CO₂ (blue shading in Figure 8; Hain et al., 2010; Kwon et al., 2012). In addition to this direct effect on the soft-tissue pump, the shoaling of North Atlantic overturning may have helped to isolate the global deep ocean as a repository for biologically sequestered carbon, as has been reconstructed based on foraminiferal Cd/Ca for the LGM (e.g., Boyle, 1988a). This reconstructed deepening of the respired carbon pool would have reduced CaCO₃ burial on the abyssal seafloor, raising whole ocean alkalinity and thereby lowering atmospheric CO₂ (Boyle, 1988b; Sigman and Boyle, 2000; Toggweiler, 1999; Yu et al., 2010b). Moreover, the expansion of corrosive SCW into the Atlantic basin is expected to cause substantial dissolution of CaCO₃ from the deep Atlantic seafloor and a permanent shoaling of the Atlantic lysocline, which would also raise whole ocean alkalinity and lower atmospheric CO₂ (Archer and Maier-Reimer, 1994; Hain et al., 2010).

In summary, over the last eight glacial–interglacial cycles, Antarctic temperature and Antarctic opal burial decline most severely upon glacial inception (Figure 8(e)–8(f)), suggesting that the ‘Antarctic stratification hypothesis’ (Francois et al., 1994) may apply to all times other than peak interglacials. In contrast, Subantarctic productivity increases (Figure 8(d)) and Atlantic deep water shoaling (Figure 8(c)) tends to occur later in the glacial progression, suggesting that the ‘iron hypothesis’ (Martin, 1990; Figure 8(d)) and the ‘ventilation volume hypothesis’ (Hain et al., 2010; Figure 8(e)) apply only to the more extreme conditions of the ice ages. In this view, when all three hypothesized processes are ‘inactive’ (red vertical shading), atmospheric CO₂ is the highest (similar to the pre-industrial value of ~280 ppmv); and when all three are ‘active’ (blue vertical shading), atmospheric CO₂ is at a minimum (Figure 8(a)). Decoupling of these mechanisms during ‘mid-climate states’ (suggested for the unshaded intervals) may explain intermediate concentrations of atmospheric CO₂ (Sigman et al., 2010).

8.18.4.2 Deglacial Perspective

The most detailed information on the coupling of the biological pump to the atmospheric CO₂ concentration and climate change arises from the last deglaciation, the transitional period between peak ice age conditions during the LGM (26.5–19 000 years before present (ky BP), see Clark et al., 2009) and the current Holocene interglacial (11.7–0 ky BP). This deglacial transition is further subdivided into Heinrich stadial 1 (HS1; ~17.5–14.6 ky BP), the Bolling-Allerød interstadial (B/A; ~14.6–12.7 ky BP), and the Younger Dryas (YD) stadial (~12.7–11.6 ky BP; see Muscheler et al., 2008). Only the Holocene is a recognized stratigraphic entity (IUGS Subcommission on Quaternary Stratigraphy) whereas the other time intervals are based on the dating of distinct patterns of climate (and ocean) change during the deglacial transition, such that the ages provided in the literature may vary.

During the LGM, cold conditions prevailed in both hemispheres (Figure 9a and 9g), and atmospheric CO₂ was low and stable (Figure 9f). As outlined earlier, during the LGM, low δ¹³C SCW extended into the deep North Atlantic while a shallow glacial form of North Atlantic Deep Water (GNAIW) occupied the intermediate depths (e.g., Lynch-Stieglitz et al., 2007 and references therein). Low sedimentary ²³¹Pa/²³⁰Th ratios of North Atlantic LGM age sediments have been interpreted as evidence that the southward flow of GNAIW was vigorous (Figure 9b; Gherardi et al., 2009; McManus et al., 2004; Robinson and van de Flierdt, 2008; Sigman et al., 2003) but essentially restricted to depths above 3000 m (Marchitto and Broecker, 2006), unlike modern NADW which reaches the bottom of the Atlantic. A ‘chemical divide’ at 2000–3000 m depth in the LGM Indo-Pacific ocean has also been identified (Boyle et al., 1995; Galbraith et al., 2007; Herguera, 1992; Kallel et al., 1988; Keigwin, 1998; Matsumoto and Lynch-Stieglitz, 1999; Matsumoto et al., 2002).
and reconstructions of deep Southern Ocean 14C/C depletion from the deep South Atlantic and the Drake Passage suggest that this divide extended into the Southern Ocean (Figure 9 (d); Burke and Robinson, 2012; Skinner et al., 2010). The deep ocean below that divide hosted a substantial amount of biologically sequestered, 13C-deplete regenerated carbon and thus lower O$_2$ (e.g., Boyle, 1988a,b,c; Jaccard and Galbraith, 2012; see Section 8.18.3.3). The permanent (year-round) LGM Antarctic sea ice cover extended substantially farther northward than today in at least some sectors of the Southern Ocean, especially the Atlantic sector (e.g., Allen et al., 2011b; Gersonde et al., 2003, 2005). Productivity in the Antarctic Zone was lower than modern (Chase et al., 2001, 2003; Frank et al., 2000; Kumar et al., 1993, 1995), but it was higher than modern in at least some parts of the Subantarctic Zone (Kohfeld et al., 2005; Kumar et al., 1995; Martinez-Garcia et al., 2009; Mashiotta et al., 1997; Rosenthal et al., 1997, 2000a). Surface nutrient drawdown appears to have been more complete in
both the Antarctic and Subantarctic zones of the Southern Ocean (e.g., Robinson and Sigman, 2008, and references therein).

HS1 refers to an episode when ice rafted debris accumulated broadly on the northern North Atlantic seafloor during a cold (stadial) phase in northern hemisphere climate (Heinrich, 1988; Figure 9(a)). Observations and model simulations of massive North Atlantic freshwater release derived from melting ice indicate that the formation of GNAIW slowed down or even ceased during HS1 (e.g., Gherardi et al., 2009; Hall et al., 2011; Manabe and Stouffer, 1995; Robinson et al., 2005a; Rooth, 1982; Thornalley et al., 2010, 2011a,b; Vidal et al., 1997). The ‘chemical divide’ at ~2500 m depth persisted during HS1 in the Atlantic basin (Oppo and Curry, 2012; Robinson et al., 2005a), but the vertical 14C/C gradient in the Southern Ocean collapsed (Figure 9(d)), which implies that the Southern Ocean water column was destratified and began to mix thoroughly (Burke and Robinson, 2012). The destratification of the Southern Ocean apparently yielded a rapid supply of nutrients and biologically sequestered carbon from the deep ocean to the Southern Ocean surface, fueling a deglacial spike in productivity in at least some regions (e.g., Anderson et al., 2009a; Figure 9(e)) despite a decline in surface nutrient drawdown (e.g., Francois et al., 1997; Robinson et al., 2004, 2005b; Sigman et al., 1999a,b). That is to say, the efficiency of the biological pump apparently declined in the Southern Ocean, and the release of 13C/12C-depleted, formerly sequestered CO2 from the ocean to the atmosphere is supported by a rising concentration (Figure 9(f)) and a declining δ13C (Figure 9(c); Lourantou et al., 2010) of atmospheric CO2 during HS1.

During HS1, the northern hemisphere experienced cold stadial climate (Figure 9(a)), but the southern hemisphere was warming (Figure 9(g)), which attests to the meridional transport of heat by both ocean and atmosphere (e.g., Crowley, 1992; Vellinga and Wood, 2002). It has long been suspected that the release of freshwater from melting ice could bring to a halt the formation of deep water in the North Atlantic (Broecker et al., 1989; Kennett and Shackleton, 1975; Rooth, 1982), which reduces ocean heat transport to the north, thereby promoting greater sea ice cover in the North Atlantic and longer seasonal snow cover on the northern hemisphere continents. Under these conditions, monsoonal winds may weaken and the global wind belts may shift southward (e.g., Barnett et al., 1988; Chiang et al., 2003). These wind changes appear to have occurred across the globe during HS1 and previous Heinrich events (e.g., Cheng et al., 2009; Lamy et al., 2007; Lea et al., 2003; Peterson et al., 2000; Wang et al., 2001, 2007, 2008). The shifting of southern hemisphere westerly winds has been suggested to explain the atmospheric CO2 rise by increasing Southern Ocean overturning (Barker et al., 2009; Broecker, 2006; Toggweiler, 2009; Toggweiler and Samuels, 1995; Toggweiler et al., 2006). If so, the wind-driven upwelling changes must also have increased Antarctic ventilation of the deep ocean (De Boer et al., 2008). Beyond changes in the southern hemisphere westerly winds, alternative and/or complementary physical mechanisms operating through deep-ocean density (Broecker, 1998; Sigman et al., 2007) or changes in the Southern Ocean sea ice dynamics (Keeling and Stephens, 2001) have been invoked to explain the ‘bipolar seesaw’ of stadial climate in the northern hemisphere and warming in the southern hemisphere during the HS1 CO2 rise.

At the onset of the Bolling–Allerød (B/A) interstadial, NADW formation reinitiated so as to fill the deep North Atlantic from the North Atlantic surface (Elliott et al., 2002; Chergadi et al., 2009; McManus et al., 2004; Robinson et al., 2005a; Thorlalley et al., 2010, 2011a,b). The northward transport of heat associated with NADW formation warmed the northern hemisphere (Figure 9(a)), whereas the southern hemisphere experienced either no substantial warming or even a reversal toward colder climate (Figure 9(g)). The rise of atmospheric CO2 halted during B/A (Figure 9(f)) and the δ13C of atmospheric CO2 increased, suggesting that the ocean carbon release stalled (Figure 9(c)). At the end of B/A, however, meltwater apparently once again freshened the North Atlantic surface (e.g., Thorlalley et al., 2011b) and North Atlantic overturning slowed and shoaled (Figure 9(b); Gherardi et al., 2009; Robinson et al., 2005a; Thorlalley et al., 2011a), giving rise to cold (stadial) northern hemisphere climate and rising temperatures in the southern hemisphere during the YD (Figure 9(a) and 9(g)). In many ways, the YD is very similar to HS1, including changing winds (e.g., Wang et al., 2008), spikes in Southern Ocean productivity (Anderson et al., 2009a; Figure 9(e)), rising atmospheric CO2 (Figure 9(f)), and declining atmospheric δ13C (Figure 9(c)). The YD, like HS1, ended abruptly to give rise to the current Holocene interglacial, with high CO2 and warm climate in both hemispheres.

While significant deviations from the above deglacial narrative may arise from other data, our understanding of the last deglaciation is arguably advanced relative to our view of glaciation. A large body of work demonstrates that, due to coupled changes in ocean circulation and biological activity, the biological pump became less efficient during deglaciation, thereby releasing CO2 to the atmosphere. However, the specific physical mechanisms for this sequence of events remain unclear. If these can be resolved, we may come to understand the converse problem: why, in the first place, the efficiency of the biological pump rises into ice ages.

References

Broecker WS and Hendon GM (1989) The sequence of events surrounding
Termination II and their implications for the cause of glacial-interglacial CO2

radiocarbon measurements on marine carbonate samples from deep-sea cores and

Broecker WS, Kennett JP, Flower BP, et al. (1989) Routing of meltwater from the

Broecker WS and Maier-Reimer E (1992) The influence of air and sea exchange on the

Broecker WS and Peng T-H (1987) The role of CaCO3 compensation in the glacial to

Geological Observatory.

Broecker WS and Takahashi T (1978) Relationship between lysolene depth and

Broecker WS and Takahashi T (1985) Sources and flow patterns of deep-ocean waters
as deduced from potential temperature, salinity, and initial phosphate

Brunelle BG, Sigman DM, Cook MS, et al. (2007) Evidence from diatom-bound nitrogen
isotopes for subarctic Pacific stratification during the last ice age and a link to North
Pacific denitrification changes. Paleoceanography 22(1): PA1215.

nutrient supply and stratification in the western subarctic North Pacific since the

Burke A and Robinson LF (2012) The Southern Ocean's role in carbon exchange during

Burke A and Robinson LF (2012) The Southern Ocean's role in carbon exchange during

evaluation of the isotopic exchange equilibrium10B(OH)3
þ10B(OH)4
−11B(OH)3
−11B(OH)4

models over 1950–99: Ozone depletion versus greenhouse forcing. Journal of
Climate 20(4): 681–693.

Caires SE, Bringham-Green J, Lawrence KT, Herbert TD, and Cook MS (2010) Last
Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea,
as inferred from diatom, alkenone, and stable isotope records. Paleoceanography
25: PA1206.

of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic.

Charles CD, Wright JD, and Fairbanks RG (1993) Thermodynamic influences on the

Chase Z, Anderson RF, and Fleisher MQ (2001) Evidence from authigenic uranium
for increased productivity of the glacial Subantarctic Ocean. Paleoceanography

composition and particle flux on scavenging of Th, Pa, and Be in the ocean. Earth

Chase Z, Anderson RF, Fleisher MQ, and Kubik PW (2003) Accumulation of biogenic and
lithogenic material in the Pacific sector of the Southern Ocean during the
past 40,000 years. Deep Sea Research Part II: Topical Studies in Oceanography

systematics in hot springs on the East Pacific Rise at 21° N and Guaymas-basin.

325(5950): 1015–1017.

Ocean based on water column inorganic carbon chemistry. Global Biogeochemical
Cycles 17(4): 16.

325(5941): 710–714.

Cleveland LC and Herbert TD (2009) Preservation of the alkaline carbonate proxy in
uplifted marine sequences: A test from the Yrica outcrop, Crotone, Italy.

CLIMAP Project Members (1981) Seasonal reconstruction of the Earth's surface at the
Last Glacial Maximum. In: Map and Chart Series MC-36, NOAA/NCDC
Paleoclimatology Program, Geological Society of America.

Collins LG, Pike J, Allen CS, and Hodgson DA (2012) High-resolution reconstruction of
southwest Atlantic sea-ice and its role in the carbon cycle during marine isotope
stages 3 and 2. Paleoceanography 27: PA3217.

Conte MH, Thompson A, and Eglinton G (1994a) Primary production of lipid biomarker
compounds by Emiliania huxleyi. Results from an experimental mesoscosm study

In: Green JC and Leatbeard BSC (eds.) The Haptophyte Algae, Systematics
Press.

Crosta X and Shemesh A (2002) Reconciling down core anticorrelation of diatom
carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography
17(1): 1010.

Crosta X, Sturm A, Armand L, and Pichon J (2004) Late Quaternary sea ice history in
the Indian sector of the Southern Ocean as recorded by diatom assemblages. Marine

enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of

Crusius J and Thomson J (2000) Comparative behavior of authigenic Re, U, and Mo
during reoxidation and subsequent long-term burial in marine sediments.

Dehairs F, Stroobants N, and Goeyens L (1991) Suspended barite as a tracer of
the barium cycle in the open ocean. Marine Chemistry 35: 399–410.

Dean WE, Gardner JW, and Piper DZ (1997) Inorganic geochemical indicators of
glacial-interglacial changes in productivity and anoxia on the California continental

Dehairs F, Chesselet R, and Jedwab J (1980) Discrete suspended particles of barite and
528–550.

Dehairs F, Stroobants N, and Goeyens L (1991) Suspended barite as a tracer of

Toggweiler JR and Sarmiento JL (1985) Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes.

