Causes of ice age intensification across the Mid-Pleistocene Transition

Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, United Kingdom; Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Research School of Earth Sciences, The Australian National University, Canberra 2601, Australia; School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom; Organic Geochemistry Unit, School of Chemistry, The Cabot Institute, University of Bristol, Bristol BS8 1TS, United Kingdom; Geologisches Institut, Eidgenössische Technische Hochschule Zürich, 8092 Zürich, Switzerland; Max Planck Institut für Chemie, 55128 Mainz, Germany; Institute of Geological Sciences, University of Bern, 3012 Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, 3012 Bern, Switzerland; and Center for Marine Environmental Sciences (MARUM), University of Bremen, 28359 Bremen, Germany

Edited by Maureen E. Raymo, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, and approved September 7, 2017 (received for review February 9, 2017)

During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ~40,000 (~40 ky) to ~100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO₂ levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO₂ data to show that the glacial to interglacial CO₂ difference increased from ~43 to ~75 μatm across the MPT, mainly because of lower glacial CO₂ levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO₂-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO₂ change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

boron isotopes | MPT | geochemistry | carbon dioxide | paleoclimate

The Mid-Pleistocene Transition (MPT) marks a major shift in the response of Earth’s climate system to orbital forcing. During the Early Pleistocene, glacial–interglacial (G-IG) climate cycles were paced by ~40,000 y (40 ky) obliquity cycles, whereas G-IG cycles after the MPT gradually intensified over multiple obliquity cycles (i.e., 80- to 120-ky periodicity) (1, 2) and acquired a distinctively asymmetric character with gradual glacial growth and abrupt glacial terminations that were paced by a combination of obliquity and precession (1). These changes gave rise to longer, colder, and dustier Late Pleistocene ice ages with larger continental ice sheets and lower global sea level (SL) (3–5) (Fig. 1). The MPT occurred in the absence of any significant change in the pacing or amplitude of orbital forcing, indicating that it arose from an internal change in the response of the climate system rather than a change in external forcing (1, 6, 7).

Proposed explanations for the MPT fall into two primary groups: those that invoke a change in ice sheet dynamics and those that call on some subtle change in the climate system’s global energy budget. Two prominent hypotheses posit that either removal of the subglacial regolith beginning at about 1,200 ky (8, 9) or phase-locking of Northern and Southern Hemisphere ice sheets at about 1,000 ky (10) gave rise to deeper and ultimately longer G-IG climate cycles by allowing for a greater build-up of ice independent of a change in CO₂ radiative climate forcing (scenario 1 in Fig. 2). Alternatively, it has been argued that an underlying change in the global carbon cycle could have triggered the MPT through a decline in ΔRCO₂ (i.e., the radiative climate forcing exerted by CO₂ decline (11–13) (scenario 2 in Fig. 2)). The continuous 800-ky-long ice core record of atmospheric CO₂ (i.e., compiled by ref. 14) is well-correlated to and shares spectral power with orbital-scale changes in temperature, ice volume, SL, and the oxygen isotopic composition of benthic foraminifera (Figs. 1 and 3). State of the art coupled climate–ice sheet models can simulate climate cycles that are longer than single obliquity cycles, provided that mean CO₂ concentrations are within certain model-dependent bounds (15, 16) (e.g., 200–260 μatm). These studies suggest that the absolute CO₂ level attained during rising obliquity (i.e., during increasing high-latitude Northern Hemisphere summer insolation) may be a critical control that determines whether ice sheets are strictly locked to the ~40-ky beat of obliquity or survive for longer periods. Recent work has provided some evidence for an overall CO₂ decline since the MPT (11, 17), supporting this view. The study by Hönisch et al. (11), in particular, provides

Significance

Conflicting sets of hypotheses highlight either the role of ice sheets or atmospheric carbon dioxide (CO₂) in causing the increase in duration and severity of ice age cycles ~1 Mya during the Mid-Pleistocene Transition (MPT). We document early MPT CO₂ cycles that were smaller than during recent ice age cycles. Using model simulations, we attribute this to post-MPT increase in glacial-stage dustiness and its effect on Southern Ocean productivity. Detailed analysis reveals the importance of CO₂ climate forcing as a powerful positive feedback that magnified MPT climate change originally triggered by a change in ice sheet dynamics. These findings offer insights into the close coupling of climate, oceans, and ice sheets within the Earth System.
evidence that CO₂ decline was most pronounced during glacial stages. Here, we build on that work with the aim to resolve the coupling of CO₂ and climate on orbital timescales to address major unanswered questions regarding the role of CO₂ change in the MPT.

To better quantify the role of CO₂ during the MPT, we present two orbitally resolved, boron isotope-based CO₂ records generated using the calcite tests of surface-dwelling planktonic foraminifera from Ocean Drilling Program (ODP) Site 999 in the Caribbean (Fig. 3 and Figs. S1 and S2). Boron isotopes (δ¹¹B) in foraminifera have proven to be a reliable indicator of past ocean pH (18, 19) and with appropriate assumptions regarding a second carbonate system parameter (Materials and Methods and Fig. S3), allow reconstruction of atmospheric CO₂ levels. Site 999 likely remained near air–sea CO₂ equilibrium through time (20), and this is further supported by agreement of our data (blue and red in Figs. 1A and 3) with published low-resolution δ¹¹B-derived CO₂ data from ODP Site 668 in the equatorial Atlantic (11) (purple squares in Figs. 1A and 3B) and with the ice core CO₂ compilation (14).

Fig. 1. Climate records across the MPT. (A) CO₂ records are shown as follows: black line, ice core compilation (14); blue, our δ¹¹B-based LP260 data; red, our δ¹¹B-based eMPT data; and purple squares, low-resolution MPT δ¹¹B record of ref. 11 (all with 2σ error bars/envelopes). The range of ice core CO₂ measurements (17) from stratigraphically disturbed blue ice and their approximate ages are indicated. (B) SL records, where orange indicates the Red Sea record (21), dark blue represents Mg/Ca-based deconvolution of deep sea benthic foraminiferal oxygen isotope data (3), and pink shows a record from the Mediterranean Sea (4). (C) Dust mass accumulation rate (MAR) in a sub-Antarctic site ODP 1090 on the southern flank of the Agulhas Ridge (24). (D) LR04 benthic foraminiferal oxygen isotope stack (28). Warm intervals are highlighted by gray bars.

Fig. 2. Changing relationship between CO₂ climate forcing and ice sheet size. Three scenarios (A–C) for the MPT intensification of glacial cycles compared with observations (D). Reconstructed SL is taken here to reflect continental ice sheet size in relationship to CO₂ climate forcing (ΔRCO₂) calculated (33) from our orbitally resolved CO₂ data. In all panels, red and blue represent conditions during our two sampling intervals before and after the MPT (i.e., eMPT and LP260), respectively. The end member scenarios posit (A) a change in ice sheet dynamics, causing ice volume to become more sensitive to unchanged G-IG climate forcing, and (B) an unchanged sensitivity of ice sheet size to forcing, with glacial intensification driven by additional CO₂ drawdown. Neither one of these two scenarios adequately describes both observed changes of increased ice sheet sensitivity (greater slope) and additional glacial CO₂ drawdown (more negative climate forcing). Here, we argue for a hybrid scenario with a change in ice sheet dynamics (possibly caused by regolith removal of ref. 10), allowing ice sheets to grow larger and to trigger a positive ice–dust–CO₂ feedback that promotes additional glacial intensification. In D, the regression confidence intervals account for uncertainty in both SL and ΔRCO₂ (SI Forcing to SL Relationship), but to avoid clutter, we only display the regression based on the Mediterranean SL reconstruction (4) and the uncertainty on the slope rather than the individual data points. We refer the reader to SI Forcing to SL Relationship and Fig. S7 for other SL records and full treatment of data uncertainties.
Fig. 3. Reconstructed ice age CO2 cycles before and after MPT. (A) Boron isotope data from ODP 999 (Fig. S1) shown in blue (LP260) and red (eMPT) along with the LR04 deep sea benthic foraminiferal oxygen isotope stack (black) (26). (B) CO2 levels calculated from boron isotopes (same colors as above) compared with ice core (black) (14) and previous low-resolution boron-derived CO2 data (purple) (11). Probabilistic assessments are shown as the colored bands, with the probability maximum shown within a dark band that represents its 95% probability envelope (±6 ppm) and a lighter band that represents the full 95% envelope of the sampled distribution. As illustrated by B, Inset, comparison between our (red) eMPT and (blue) LP260 records reveals that glaciers on average experienced higher CO2 levels during eMPT than LP260 (eMPT: 241 ± 21 μatm vs. LP260: 203 ± 14 μatm; 2σ), whereas interglacial levels were indistinguishable between the two time slices (eMPT: 284 ± 17 μatm vs. LP260: 277 ± 18 μatm; 2σ).

Results

Our two datasets span an early portion of the Mid-Pleistocene Transition (eMPT) from 1,080 to 1,250 kya (n = 51) and for validation against the ice core CO2 record, the Pleistocene interval from 0 to 260 kya (LP260; n = 59, including 32 recalculated data points from ref. 18), yielding a similar median sampling interval of ~3.5–4.5 ky for both records. Our LP260 CO2 dataset has a confidence interval of ±20 μatm (2σ) and is offset by a mean of +7 μatm from the ice core CO2 data when accounting for both CO2 and age uncertainties (21) (Fig. 3B and SI Methodology). Comparison between our two CO2 records reveals that eMPT glacialCO2 averaged at ~10% greater (i.e., higher) than LP260 glacialCO2 (eMPT: 241 ± 21 μatm vs. LP260: 203 ± 14 μatm; 2σ), whereas interglacial levels were indistinguishable (eMPT: 284 ± 17 μatm vs. LP260: 277 ± 18 μatm; 2σ). This analysis uses highest and lowest 25th percentiles of δ18O values to define “glacial” and “interglacial” subsets of the data, although this pattern is independent of the thresholds that we define (Fig. 4 and Fig. S4). Our analysis reproduces the glacial-stage-specific CO2 decline in CO2 levels found in ref. 11, leading to similar reconstructed increases in the glacial to interglacial CO2 difference since the MPT (40 ± 47 and 32 ± 35 μatm based on ref. 11 and our data, respectively) (Fig. 4). The higher resolution of these datasets allows this approach to yield useful data about our timespans, despite the relatively large uncertainty on each individual data point. When analyzed in a similar way, recent direct measurements of CO2 from a stratigraphically disturbed section of ~1-Ma-old “blue ice” (17) offer a fully independent test for the two δ18O-based reconstructions and are consistent with these findings (Fig. 4 and Fig. S4). Thus, all available evidence suggests that the MPT was associated with a transition in the global carbon cycle characterized mainly by enhanced glacial-stage drawdown of CO2.

We evaluate the reconstructed G-IG CO2 change across our study interval with a carbon cycle model inversion of Southern Ocean and Atlantic mechanisms thought to have contributed to the most recent Late Pleistocene G-IG CO2 cycles (22). For this, we force the CYCLOPS carbon cycle model (23) with ODP 1090 sedimentary iron mass accumulation rates (24), ODP 1094 Ba/Fe ratios (25), and ODP 982/1U1313 (Fig. S1) benthic Δδ13C variations (26, 27) to represent, respectively, (i) sub-Antarctic dust-borne iron fertilization; (ii) combined changes in polar Antarctic strafation, nutrient drawdown, and export production; and (iii) transitions in the geometry and depth structure of the Atlantic Meridional Overturning Circulation (AMOC) (Fig. S5). These mechanisms and their model sensitivities have been documented elsewhere (23). Here, we invert the model and the forcing to minimize the mismatch between simulated atmospheric CO2 levels and the ice core CO2 record of the last 800 ky (residual rms error of 12.3 μatm) (SI Carbon Cycle Modeling) and then, to predict atmospheric CO2 levels back to 1,500 ky (Fig. S5) for comparison with our data.

We find that changes in the periodicity of simulated CO2 levels closely match those in the ice core CO2 record, in the benthic foraminiferal oxygen isotope record, and in our δ18Obased CO2 reconstruction (Fig. S6). Within the relative age uncertainty between the model forcing and our δ18O record, we find that the model explains more than 60% of the variance observed in our eMPT CO2 reconstruction, in line with model and reconstruction uncertainties. The model inversion does not include any secular change in the silicate weathering cycle (11) (SI Carbon Cycle Modeling), so that simulated CO2 change is exclusively related to carbon redistribution within the ocean–atmosphere system and associated CaCO3 compensation dynamics (22, 23).
In good agreement with the δ^{11}B-based CO$_2$ reconstructions and the ice core CO$_2$ measurements, the model inversion yields (i) insignificant (-1 ± 3 μatm; 2σ) eMPT to LP260 interglacial CO$_2$ change and (ii) a -22 ± 5 μatm (2σ) eMPT to LP260 decline in glacial-stage CO$_2$ levels (Fig. 4 and Fig. S4). In the model, we can attribute most of the additional glacial CO$_2$ drawdown to MPT intensification of glacial dust-borne iron fertilization of biological productivity and nutrient utilization in the Sub-Antarctic Zone of the Southern Ocean (24, 28–30) (Fig. S5). AMOC shoaling also seems to have become more prevalent after \sim1,200 ky but contributes less to simulated CO$_2$ change (23). The model reproduces relatively low reconstructed interglacial CO$_2$ from 400 to 800 ky, because use of ODP 1094 Ba/Fe in the model inversion results in persistent polar Southern Ocean stratification as suggested previously (25). Through our eMPT sample interval, the model reproduces the \sim80-ky CO$_2$ periodicity that is evident in our eMPT δ^{11}B data (Fig. S6), mainly because of an \sim80-ky periodicity in eMPT polar Antarctic stratification and nutrient cycling recorded in ODP 1094 Ba/Fe (25). While all three forcings (iron fertilization, Atlantic circulation, coupled polar Antarctic changes) contribute to the simulated changes in CO$_2$ periodicities that are highly coherent with the MPT change in rhythm of the climate system, the iron fertilization influence dominates the MPT intensification of ice age CO$_2$ drawdown (Fig. S5).

Discussion

MPT intensification of glacial-stage CO$_2$ drawdown is consistent with stabilization of continental ice sheets during increasing orbital obliquity by reduced greenhouse gas forcing, thereby helping ice sheets to grow larger and for periods longer than one obliquity cycle (scenario 2 in Fig. 2). However, when we directly compare changes in SL as a measure for ice volume against CO$_2$ climate forcing (ΔRCO$_2$) from our records (Fig. 2D), we find that, between eMPT and LP260, ice sheet mass increased progressively more per CO$_2$ lowering, thereby increasing the SL–ΔRCO$_2$ slope in Fig. 2. This suggests an increase in ice sheet sensitivity to CO$_2$ forcing across the MPT, with the caveat that eMPT may not fully capture pre-MPT conditions, although it agrees with the longer-term record of Hönisch et al. (11). This finding is robust, regardless of which SL reconstruction is used (Fig. S4), and indicates that all three empirical SL records are linear, with increasing slopes from eMPT to LP260. The steepening relationship is also evident when regressing δ^{11}B to δ^{18}O relationships, with both isotope ratios measured on the same sample material (Fig. S8). Using the SL record with the best coverage of both intervals, relative SL from the Mediterranean Sea (4), we estimate 25 ± 3 and 45 ± 5 m of SL lowering for each 1-Wm$^{-2}$ reduction in radiative forcing during eMPT and LP260, respectively. Such a pronounced increase in sensitivity implicates a change in ice sheet dynamics as predicted by the regolith hypothesis (8, 9) or the establishment of marine-based ice sheet margins in East Antarctica (10) (scenario 1 in Fig. 2).

The observed changes in the SL to ΔRCO$_2$ relationships contain elements of both end-member scenarios shown in Fig. 2. A and B, in which a greater slope is possibly related to changes internal to the ice sheets (scenario 1) and amplified glacial to interglacial CO$_2$ climate forcing is linked (this study) to increased glacial dustiness that causes enhanced Southern Ocean iron fertilization (scenario 2). Therefore, we propose a hybrid scenario (Fig. 2C) that incorporates both heightened ice sheet sensitivity to CO$_2$ forcing and dust-driven ocean sequestration of CO$_2$ to represent the observed climate system change across the MPT.

First, we propose that—independent of orbital and CO$_2$ forcing—a process internal to the climate system yielded greater glacial buildup of ice sheets [e.g., regolith removal (8) or ice sheet phase-locking (10)]. Second, we infer that larger ice sheets led to increased glacial atmospheric dustiness (31, 32), either directly through SL lowering or indirectly because of atmospheric cooling, drying, and/or changes in surface winds. This, in turn, induced glacial iron fertilization of the Sub-Antarctic Zone of the Southern Ocean, thereby effecting the 20- to 40-μatm increase in the amplitude of the G-IG CO$_2$ cycles documented here (Fig. 4) (11). In our hybrid scenario, the positive climate–dust–CO$_2$ feedback is required to (i) drive additional ice sheet growth and (ii) stabilize those ice sheets during the critical orbital phase of rising obliquity, ensuring the survival of ice sheets beyond single obliquity cycles. Therefore, regardless of the mechanism that served as the initial MPT trigger, our findings further illustrate the exquisite coupling that exists in the Earth System between climate change, ice sheet mass, and the polar ocean mechanisms that regulate G-IG CO$_2$ change.

Materials and Methods

Globigerinoides ruber white sensu stricto (300–355 μm) were picked from sediments from ODP 999A (Fig. 5), and the age model was constructed by benthic oxygen isotopes from the same samples and X-ray fluorescence scanning data. Samples were measured for boron isotope composition using a Thermo Scientific Neptune multicollector inductively coupled plasma mass spectrometer at the University of Southampton according to methods described elsewhere (18). Analytical uncertainty is given by the external reproducibility of repeat analyses of Japanese Geological Survey Porites coral standard at the University of Southampton and is typically <0.2% (at 95% confidence). Metal element–calcium ratios (Mg, B, Al) were analyzed using Thermo Scientific XPS 2XR inductively coupled plasma mass spectrometers at the University of Southampton. Here, these data are used to assess adequacy of clay removal (Al/Ca < 100 μmol/mol) and to generate down core temperature estimates. CO$_2$ was calculated using a Monte Carlo approach (10,000 replicates) with estimates of salinity and alkalinity using a flat probability spanning a generous range (34–37 psu and 2,100–2,500 μmol/kg, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively). A normal distribution around proxy data was used for all other input variables (temperature, pH, respectively).

Inverse carbon cycle modeling was carried out using the CYCLOPS model (23), with the forward model forcing derived from pertinent paleoceanographic records (25–27) and the forcing scaling parameters inverted to minimize model misfit with respect to the ice core CO$_2$ record of the last 800 ky. Significant linear correlation with and matching spectral content to our boron-isotope-based CO$_2$ data confirm the skill of the model inversion (Fig. S6). Detailed statistical analysis is carried out to identify and quantify changes in absolute glacial and interglacial CO$_2$ as well as the G-IG CO$_2$ range from the model inversion results, our high-resolution CO$_2$ data, and some previous datasets (11, 17) that are not well dated or lack the required temporal resolution for comparison in the time and/or frequency domains. This analysis is based on estimation of the population means of cumulative probability density of glacial and interglacial subsamples, which were selected based on either available benthic foraminiferal δ^{13}C or CO$_2$ rank (Fig. 4). Factorial analysis of the validated model allows for the mechanistic attribution to sub-Antarctic iron fertilization of glacial stage-specific CO$_2$ reduction associated with the MPT interval (Fig. S5, Bottom), which is the pattern that we identified as common between model and all three empirical datasets. More detailed descriptions of inverse modeling and model/data cross-validation and statistical quantification of CO$_2$ change can be found in SI Carbon Cycle Modeling and SI Quantification of δ^{13}C, CO$_2$, and δ^{11}B–CO$_2$, respectively.

ACKNOWLEDGMENTS. We thank J. A. Milton, M. Cooper, A. Michalk, M. Spencer, and members of the “boron-team” at the University of Southampton.

Supporting Information

Chalk et al. 10.1073/pnas.1702143114

SI Sample Locations and Age Model
We present a highly resolved (one sample per 3.5-4.5 ky) δ11B-derived atmospheric CO2 record from ODP Site 999 (Caribbean Sea; 12°44.64’N and 78°44.36’W) (Fig. S1) that spans the 0–260 ky (i.e., LP260) and 1,080–1,250 ky (i.e., eMPT) time intervals. Sedimentation rates in these intervals are ~3 cm/ky. Across large parts of the oceans (typically the oligotrophic regions of the low latitudes), the CO2 content of the gas phase of surface seawater approximately equates to the CO2 content of the overlying atmosphere (i.e., the surface water is in approximate CO2 equilibrium with the atmosphere). It is from these locations, such as ODP Site 999 (Fig. S1), that atmospheric CO2 concentrations can be most reliably reconstructed using the δ13C method (34).

Site 999 is today in near-air–sea CO2 equilibrium (approximately ∼600 ppm) (35) (Fig. S1) and has likely maintained this near-equilibrium state through the Pleistocene and Pliocene (24, 36). The foraminifera at ODP 999 are well-preserved, meaning that diagenesis is not likely to negatively impact our reconstructions. It is also worth noting that even moderate to severe diagenesis has been shown to have little or no impact on the δ13C record to the LR04 benthic O stack (29) (Fig. S2). The resultant δ18O stack (29) (Fig. S2) using the Analyseries software (38).

For our age model, we generated a benthic δ18O record for ODP Site 999 from ~600–1,500 ky at a resolution of 3 ky using Cibicidoides wuellerstorfi that includes the same samples used to determine CO2 during our eMPT interval (Fig. S1). The samples were measured on a Finnigan MAT 253 gas isotope ratio mass spectrometer at the Zentrum für Marine Tropenökologie.

For the interval 0–260 ky, we generated a detailed age model by aligning the published planktic foraminiferal (Globigerinoides ruber) δ18O record from Site 999 (at ~0.5–to 2.0-ky resolution) (39) to the LR04 benthic δ18O stack (29) (Fig. S2). The resultant age model provides excellent agreement between our lower-resolution benthic δ18O data and the LR04 benthic δ18O stack in the interval 110–260 ky (Fig. S2).

SI Methodology

Analytical Techniques. Between 140 and 220 individuals of G. ruber (white; sensu stricto; ~10 µg per shell) were picked from the 300- to 355-µm size fraction of the coarse (>63 µm) fraction of washed sediments from ODP 999. Foraminiferal samples were cracked and cleaned in the boron isotope clean laboratory at the University of Southampton. The cleaning was done between two glass slides under a microscope, and care was taken to open all major chambers to allow for effective clay removal. The cleaning followed established methods for oxidative cleaning (40–42).

After cleaning, G. ruber samples were dissolved in weak (~0.15 M) Teflon-distilled nitric acid and separated into two fractions: an “isotope” fraction (90%) and a “trace element” fraction (8–10% of sample volume). Boron was separated from the matrix of the isotope fraction with anion exchange resin (Amberlite IRA-743) in purpose-built columns (22, 43).

Boron isotope ratios were measured at the University of Southampton on a Thermo Scientific Neptune multicollector inductively coupled plasma mass spectrometer following established methodology (21, 36, 42, 43). External reproducibility was calculated based on the reproducibility of an in-house standard [Japanese coralline Porites – JCP-1 = 24.2‰ (42)] described by Chalk et al. www.pnas.org/cgi/content/short/1702143114 1 of 11

Eq. S1 below, where [11B] = intensity in volts of 11B; for this study, the 2σ uncertainty typically corresponds to ~0.2‰:

\[2\sigma = 1.87 \cdot \exp^{-0.6[11B]} + 0.22 \cdot \exp^{-0.43[11B]} \]

[S1]

The trace element fraction was diluted, and Me/Ca ratios of Li, B, Na, Mg, Al, Mn, Fe, Sr, Cd, Ba, Nd, and U were measured on a Thermo Scientific Element 2-XR inductively coupled plasma mass spectrometer at the University of Southampton. Over the period of this study, reproducibility of three internal standards with a range of Me/Ca ratios was 4% for Mg/Ca and 5% for Al/Ca. We use the trace element data to screen for diagenesis and other potential artifacts. Samples with Al/Ca > 100 µmol/mol were strictly removed to preserve data quality, and we find no anomalies in other element ratios (e.g., Mn/Ca, Ba/Ca, and Fe/Ca).

Mg/Ca temperatures were calculated following the approach of Evans and Müller (44) and using an Mg/Ca of seawater (Mg/Ca(iw)) that was calculated from the modeled study of Fantle and DePaolo (45). We use an H value of 0.41, although species-specific to Trilobatus (formerly Globigerinoides) sacculifer (46), as no calibrated H value for G. ruber is currently available. Note that the accuracy of this reconstruction is not crucial to our findings, since sea surface temperature has a relatively weak effect on calculated CO2 (Determination of CO2 from δ13C Derived pH), and also, the potential change in Mg/Ca(iw) over the last million years is small because of the long residence times of the elements involved.

Determination of pH from δ11B of G. ruber. Boron is present in two principal forms in seawater: boracic acid [B(OH)3] and borate ion [B(OH)4−]. The relative proportion of these two species depends on pH and the dissociation constant for boracic acid, pKα:

\[\log_{10} \frac{[B(OH)_3]^–}{[B(OH)_4]^-} = pH - pKα^- \]

[S2]

An isotopic fractionation between the two stable isotopes of boron-11 (~98% abundance) and boron-10 (~2%) is also associated with this equilibrium (above), as the bond strengths between boron and the hydroxyl ion in boracic acid and the borate ion differ. The 11B concentrates in the more strongly bonded boracic acid, giving it a higher δ11B than the borate ion by ~27.2‰ (47). The delta notation (δ11B) is used to express differences in boron isotope ratios:

\[\delta^{11}B(\%e) = \left(\frac{^{11}B_{smp}}{^{11}B_{sw}} \right) - 1 \times 1,000 \]

[S3]

where 11B(smp) is the isotopic ratio of NIST SRM 951 boracic acid standard (11B/smp = 4.04367) (48) and 11B(sw) is the isotopic ratio of the sample. The basis of the boron isotope–pH proxy is that, because the boron ion is tetrahedral and charged, it is more readily substituted into CaCO3 (49, 50). Therefore, we can solve for pH based on the reconstructed isotopic composition of δ11B(borate):

\[pH = pKα^- - \log \left(\frac{\delta^{11}B_{sw} - \delta^{11}B_{borate}}{\delta^{11}B_{sw} - (\alpha \cdot \delta^{11}B_{borate}) - 1,000 \cdot (\alpha - 1)} \right) \]

[S4]
where K_B^* is the dissociation constant for boric acid at reconstructed in situ temperature, salinity, and pressure (51); $\delta^{11}B_{sw}$ is the isotopic composition of seawater (39.61‰) (52); $\delta^{11}B_{borate}$ is the isotopic composition of borate ion; and α is the isotopic fractionation factor between the two aqueous species of boron in seawater ($\alpha \approx 1.0272$, equivalent to an equilibrium isotope fractionation of $\approx 27.2‰$) (47). Boron is well-mixed in the oceans, with a residence time of $10-20$ My to account for likely (small) changes in the boron isotopic composition of seawater ($\delta^{11}B_{sw}$), we use a simple linear extrapolation with a central value at modern $\delta^{11}B_{sw}$ (39.61 ± 0.1‰) (52) with uncertainty increasing by ±0.12‰ by 1,200 ky (0.1‰/My). This central value is consistent with an independent constraint, and any possible changes (53-55) are well-accounted for by the generous uncertainties that we ascribe to all parameters.

As $\delta^{11}B_{G.\ ruber}$ (the $\delta^{11}B$ of boron in $G.\ ruber$ calcite) is offset from $\delta^{11}B_{borate}$, it is necessary to first account for this relatively minor deviation to calculate pH from $\delta^{11}B_{G.\ ruber}$ and a size-specific core top, culture, and field measurement calibration (Eq. SS) is applied for $\delta^{11}B_{borate}$ reconstruction (33, 39). This relationship has been shown in other studies to provide for accurate atmospheric CO$_2$ reconstructions (1, 21, 23). Uncertainties in this calibration ($G.\ ruber$ 300–355 μm) are propagated through all relevant calculations (shown below at 2σ):

$$\delta^{11}B_{borate} = (\delta^{11}B_{G.\ ruber} - 8.87 \pm 1.51) \times 0.6 \pm 0.08$$ \hspace{1cm} \text{(SS)}$$

Determination of CO$_2$ from $\delta^{11}B$-Derived pH. To calculate aqueous CO$_2$ from pH, a second carbonate system parameter is required (34). Here, we briefly outline two approaches to estimate total alkalinity (ALK) to derive CO$_2$ from our pH data: (i) ALK remained within a specified range of its modern value, and (ii) ALK change correlates with reconstructed pH change. Below, we describe why both approaches yield very similar results, and we describe a sensitivity test to show that our main conclusions are not affected by the choice of how to estimate ALK. In the main text and our tabulated dataset, we assume that ALK has remained within a generous range around its modern value (±2330 ± 175 μmol/kg) over the investigated period. The outcome of our own model inversion of CO$_2$ change of the last 1,500 ky (Model Inversion has details on the model) suggests a total ALK range of only 130 μmol/kg, much less than the 350-μmol/kg uncertainty range propagated here. This means that we fully explore the likely ALK range based on modeling of whole-ocean ALK variability on G-IG timescales and over the last 1,500 ky (1, 26). This treatment of the second carbonate system parameter essentially assumes that any change in ALK will drive the majority of its impact on CO$_2$ by changing pH (which we reconstruct directly) rather than by changing the abundance of carbonate and bicarbonate ions. This assertion is based on first principle carbon chemistry and can be verified by comparing reconstructed pH with the ice core CO$_2$ record (Fig. S3A). When we cross-plot $\delta^{11}B$-based pH against ice core CO$_2$, we find that the data are well-described by the theoretical pH to CO$_2$ relationships, assuming either constant DIC or constant ALK (Fig. S3A), in support of our assertion. The alternative view is that much of the reconstructed pH change was caused by changes in ALK, such that ALK and pH are correlated (i.e., the ~0.2 pH increase during the Last Glacial Maximum corresponds to a ±100-μmol/kg ALK increase) (26, 56). We carry out a sensitivity test to estimate how much difference in terms of CO$_2$ that it makes to account for this correlation (Fig. S3B). We find that including the ALK to pH correlation reduces our estimate for additional glacial-stage CO$_2$ reduction by about 5 μatm, and it reduces our estimated increase of the G-IG CO$_2$ range by about 5 μatm (Fig. S3C). As described above, this relatively modest change is because of the fact that ALK change causes most of its impact on CO$_2$ by changing surface pH, the parameter that we reconstruct (Fig. S3B). We argue that the modest difference between the two ALK assumptions does not change the main conclusions of this study, especially given the agreement between our data, previously published fully independent CO$_2$ reconstructions, and our carbon cycle modeling results (Fig. 4 and Fig. S4). Since the ALK to pH correlation is itself uncertain, we prefer the calculation using a large and constant ALK uncertainty range that more than covers existing estimates of G-IG ALK change (26, 56). With this approach, the small deviation between the ALK assumptions is effectively covered by our uncertainty propagation, and there is little independent evidence to suggest that this assertion is invalid (57, 58).

Using $\delta^{11}B$-derived pH and the prescribed ALK and modern aqueous CO$_2$ disequilibrium, uncertainties are propagated via a Monte Carlo simulation ($n = 10,000$) in the statistical analysis program R (59), and 95% confidence intervals are calculated from the variation within these simulations. Two SD uncertainties on the individual input variables are included for $\delta^{11}B$ (with or without analytical uncertainty defined by Eq. SI, normal distribution), Mg/Ca-derived temperature ($\pm3{ }°C$, normal distribution), salinity (±3 psu, normal distribution), ALK (±175 μmol/kg, uniform distribution), and $\delta^{11}B_{sw}$ (39.61 ± 0.10-0.22‰, normal distribution) (52). Atmospheric CO$_2$ was then calculated from aqueous CO$_2$ using Henry’s Law, subtracting the modern extent of dissequilibrium with respect to CO$_2$ atm at the site (given a nominal uncertainty at 2σ of ±50‰ (i.e., ±10 μatm)). Uncertainties in CO$_2$ also include propagation of the uncertainties in the $\delta^{11}B$ calibration of $G.\ ruber$ (Eq. SS). All subsequent carbonate system calculations in R were performed using the seacarb package (59, 60).

SI Forcing to SL Relationship

Extraction of the underlying relationship between two empirical datasets requires careful consideration of uncertainty in both x and y coordinates (61). In our case, the x coordinate is CO$_2$ climate forcing, ΔR_{CO_2} which is calculated directly from reconstructed CO$_2$ following ref. 33:

$$\Delta R_{CO_2} = \alpha \times \ln \frac{CO_2}{CO_2^0} (\text{at} \ 5.35 \ W \ m^{-2}, CO_2^0 = 278 \ \text{μatm}) \hspace{1cm} \text{(S6)}$$

We calculate mean and SD of ΔR_{CO_2} as the half-point and quarter-width of the $\pm2\sigma$ interval of our CO$_2$ reconstruction. As for the y coordinate, SL in our case, we point out that there are three sources of uncertainty: (i) the inherent uncertainty of the SL estimate documented alongside each SL record, (ii) the range of SL within the age window defined by the relative age uncertainty of the SL and the CO$_2$ age models, and (iii) the systematic discrepancies between different SL records. The latter point we address by carrying out our analyses independently for a number of recent SL records (11, 12, 24, 62), and we find only modest differences, suggesting that our conclusions are robust to these systematic SL discrepancies. To account for both i and ii, for each CO$_2$ data point, we estimate SL and its uncertainty by constructing the cumulative distribution function (CDF) of all SL data that fall within the relative age uncertainty window (which we take to be 1.5–2 ky for our LP260 data; an uncertainty ramps from 2 to 4 ky over the course of the 800-ky compilation of ice core CO$_2$ reconstructions and 6 ky for our eMPT data). For each individual CDF, we estimate the appropriate SL mean and SD as the half-point and half-width of the 16 to 84% interval (corresponding to $\pm1\sigma$). This procedure yields typical individual data point SL uncertainties about 20 m ($\pm2\sigma$) and significantly larger uncertainties for a few points that happen to correspond to times of rapid SL change.

Chalk et al. www.pnas.org/cgi/content/short/1702143114 2 of 11
As for the regression of the underlying CO$_2$ forcing to SL relationship, we make use of the approach laid out by York et al. (61), a generalized form of “reduced major axis” regression method that takes full account of normal error in x and y. We carry out this regression technique using four independent SL reconstructions (11, 12, 24, 62) for both our LP260 CO$_2$ dataset (Fig. S7A) and our eMPT dataset (Fig. S7D). In all cases, we display the regression confidence interval. The confidence intervals of the regressed slopes for LP260 (Fig. S7B) and eMPT (Fig. S7B3) are of particular interest. We consistently find the CO$_2$ forcing to SL slope to be significantly steeper during LP260 (about 40–50 m/My$^{-2}$) than during eMPT (less than 25 m/My$^{-2}$), supporting the main line of argument in our study.

To build confidence in our regression method, we offer three tests. (i) Are the regressions based on our LP260 dataset consistent with regressions based on the compilation of the continuous ice core CO$_2$ record of the last 800 ky? (ii) Does preindustrial SL fall within the prediction interval of our regressed CO$_2$ forcing to SL relationships? (iii) Is the regression method by York et al. (61) skillful in extracting the correct CO$_2$ forcing to SL relationships when put to the test with synthetic data that mimic our eMPT data and their uncertainties?

To address i, we carry out the regression using the ice core CO$_2$ record against all SL records based on a 200-ky sliding window of data. Because the sampling interval of the ice core CO$_2$ compilation changes dramatically over its 800-ky range (and in particular, over the course of the last deglaciation), we regularize the CO$_2$ data by binning it into ±1-k increments and estimate bin mean and SD analogous to the SL data. We find that, throughout the last 800 ky, the CO$_2$ forcing to SL slopes regressed in that way generally fall within a band of 35–55 m/My$^{-2}$ (gray shading in Fig. S7B2), in good agreement without LP260 data and significantly greater than for our eMPT data. We note that the slope regressed from the SL record that is based on Mg/Ca-$_8$O deconvolution (11) exhibits a long-term oscillation not seen in any of the other SL regressions, but even at its lowest point, it is still significantly larger than that regressed during the eMPT. Likewise, while the Mediterranean SL regression (12) falls into a constant narrow range for most of the 800 ky, its regressed CO$_2$ forcing to SL slope yields anomalous variability during a brief interval around 500 ky, where the SL record is known to be overprinted by a series of sapropel layers. The regression based on the Red Sea SL record (25), arguably the best constrained SL regression, is remarkably constant over the entire 500-ky period that it spans, as is the case for the entire last 800 ky for the regression based on simulated SL by De Boer et al. (62). Based on that analysis, we conclude that there is no evidence for substantial changes in the CO$_2$ forcing to SL slope over the entire 800-ky duration of the ice core CO$_2$ record and that the significantly lower regressed slopes for our eMPT dataset therefore speak to a change in the CO$_2$ forcing to SL relationship associated with the MPT. Furthermore, we note that, in Fig. 2, we only present the regression results of the Mediterranean SL record, which this supplementary analysis suggests to be both robust and the most conservative record covering both the LP260 and eMPT intervals. We have further confidence in our conclusion of an MPT reduction in the CO$_2$ forcing to SL slope, because we find an equivalent change when considering the LR04 benthic foraminifera 8^{18}O stack instead of SL (Fig. S8), which is observationally well-constrained and carries a significant component SL signal.

To address ii, the test for SL predicted for preindustrial CO$_2$ forcing, we replicate our analysis of the CO$_2$ forcing to SL slope for the intercept regression parameter, shown in an analogous way in Fig. S7C. When using the regressed CO$_2$ forcing to SL relationship, however, it is the prediction interval (dashed in Fig. S7C) and not the regression confidence interval that is relevant, because the CO$_2$ forcing to SL regression does not embody residual SL change caused by factors, such as orbital change. Hence, the prediction interval at the intercept is wider than the intercept confidence interval, and it comfortably includes preindustrial SL at preindustrial CO$_2$ forcing during LP260.

Finally, to address iii, the question as to the skill of York regression to extract the correct CO$_2$ forcing to SL slope even in the face of substantial x and y uncertainty of individual points and an overall low signal to noise ratio, we construct a synthetic test that mimics the signal to noise ratio of our eMPT data (Fig. S9). That is, we presuppose a known CO$_2$ forcing to SL relationship and generate randomized data points based on the typical uncertainties of CO$_2$ forcing and SL. To carry out this analysis, we change the number of synthetic data points used for the regression and find that (i) the true slope of the known synthetic relationship falls within the regressed slope confidence interval; (ii) the width of the regressed slope confidence interval systematically narrows as the number of data points increases; and (iii) at 50 data points, the slope confidence interval is narrow enough to detect the change in slope that we reconstruct between LP260 and eMPT.

SI Carbon Cycle Modeling

Model Details. To simulate the global carbon cycle and atmospheric CO$_2$ levels across the MPT, we make use of the recently updated CYCLOPS model (27). The model represents the oceanic carbon cycle and physical circulation as the exchange between 18 separate surface, middepth, and deep water reservoirs, as well as carbon fluxes between surface water reservoirs and an atmospheric reservoir. Following previous work (63, 64), the model simulates the open system CaCO$_3$ cycle through explicit representation of undersaturation-driven seafloor dissolution of biogenic CaCO$_3$ rain that originates from the surface.

To simulate global carbon cycle variations in the Pleistocene, we apply three fully separate forcings to the model, all of which represent well-established modes of carbon cycle and circulation change previously investigated using CYCLOPS: (i) major nutrient drawdown driven by glacial-stage iron fertilization of the Sub-Antarctic Zone of the Southern Ocean (7, 65); (ii) coupled glacial-stage reduction in vertical exchange, export production, and residual surface nutrient status of the Polar Antarctic Zone of the Southern Ocean (56, 66–68); and (iii) glacial-stage shaling of the AMOC (69–72). The rationale and evidence base for these changes have been reviewed elsewhere (73), and the model’s atmospheric CO$_2$ sensitivity to these mechanisms has been evaluated in detail (27). To represent the time evolution in model forcing, we use OD P 1090 iron mass accumulation rate (1), OD P 1094 Ba/Fe (28), and OD P 982/U1313 (29, 30) observational records to adjust model conditions in the Sub-Antarctic Zone, the Polar Antarctic Zone, and the global deep water circulation pattern, respectively. Other drivers of CO$_2$ change (e.g., silicate weathering feedback, temperature) are not considered here but will be investigated in the future. Similarly, by implementing Atlantic circulation changes based on North Atlantic carbon isotope gradients, our model does not reflect exceptional circulation weakening during MIS 23 inferred from neodymium isotopes (74) or any other modes of AMOC reorganization.

Extension of OD P 1094 Ba/Fe Proxy Forcing. The previously published OD P 1094 Ba/Fe record from 0 to 1 Mya was extended to allow us to start the forced simulation as early as 1.5 My. The composite section for the deeper part of OD P core 1094 (>121 med; 1–1.5 My) was mainly reconstructed using magnetic susceptibility (75), Fe counts derived from X-ray fluorescence (XRF) scanning on sediments of Holes A and D, and the 8^{18}O of the planktonic foraminiferal species *Neogloboquadrina pachyderma*. The age model of the core is based on tuning the 8^{18}O of the benthic foraminifer *C. wuellerstorfi* to the LR04 benthic stack.
(29), as will be documented elsewhere. Oxygen isotope analyses were performed with a Thermo GasBench II coupled to a Thermo Delta V Plus mass spectrometer at the Geological Institute, ETH Zurich (1σ error of 0.07‰). The relative sedimentary concentrations of Ba and Fe were acquired with an AIVAATech profiling XRF core scanner at the MARUM, University of Bremen using the same settings and procedures as in ref. 28 but with a different detector (Canberra X-PIPS Silicon Drift Detector, Model SXD 15C-150-500). To assure that the XRF data are consistent throughout the entire record, four sections between 0 and 1 My have been resampled. The elemental XRF data of the resampled sediments are correlated to each other, and their linear fit is used to scale newly acquired data accordingly (r = 0.97 for Fe, r = 0.77 for Ba).

Model Inversion. The relationship between the observational records and the forcing applied to the model (sub-Antarctic nutrient status, polar Antarctic/deep Southern Ocean exchange, polar Antarctic surface nutrient status, and Atlantic overturning) is represented as four equations with a total of seven free parameters (i.e., intercept and slope, threshold in the case of Atlantic overturning). The Atlantic circulation is simulated as “shallow” only if the reconstructed vertical stable carbon isotope gradient in the deep North Atlantic increases above a threshold value determined as part of the inversion; all other forcing functions are continuous and monotonic. For the Antarctic changes, vertical exchange scales with Ba/Fe, while surface nutrient status scales with the square root of Ba/Fe, thereby in effect, assuming a sublinear scaling between Ba/Fe and export production [i.e., the property arguably recorded by Ba/Fe at ODP 1094 (28)]. The seven forcing function parameters are initially set to arbitrary (but sensible) values.

We invert the model by finding the specific combination of the seven forcing function parameters that minimize the rms error of simulated atmospheric CO\(_2\), as evaluated against a composite reconstruction of atmospheric CO\(_2\) from Antarctic ice cores (19). That is, given the observational forcing records, the forward model, and the CO\(_2\) record, we invert to obtain the model forcing parameters that minimize the rms objective function. To be confident in the outcome of the minimization procedure across 7D parameter space, we incorporate into the model two fully independent methods and verify that they converge onto the same solution; (i) Powell’s conjugate direction method (76–78) and (ii) the Fletcher–Reeves implementation of the Steepest Descent conjugate gradient method (79). Side conditions relating to physically possible parameter solutions are encoded directly into the model, and both algorithms converge to the same solution at an rms of 12.2 μatm.

SI Quantification of \(^6\)CO\(_2\), \(^{12}\)CO\(_2\), and \(^{14-G}\)ΔCO\(_2\)

Given our two \(^{13}\)B-based CO\(_2\) reconstructions (eMPT, LP260), we wish to (i) quantify by how much glacial and interglacial CO\(_2\) levels (i.e., \(^{12}\)CO\(_2\) and \(^{14-G}\)CO\(_2\), respectively) are different across the MPT and by how much the magnitude of G-IG CO\(_2\) cycles (i.e., \(^{14-G}\)ΔCO\(_2\)) has changed and (ii) compare our estimates with equivalent estimates derived from existing CO\(_2\) records (1, 2, 19) as well as from our model-derived predictions of CO\(_2\) (SI Carbon Cycle Modeling). This section describes the details of the analysis and offers discussion of the rationale behind these calculations. Our analysis of the CO\(_2\) datasets consists of four steps: (i) define which individual data points represent glacial conditions and which data points represent interglacial conditions, (ii) estimate the average CO\(_2\) and its uncertainty from the two sets (i.e., \(^{12}\)CO\(_2\) and \(^{14-G}\)CO\(_2\)) of CO\(_2\) data, (iii) estimate the G-IG CO\(_2\) difference (i.e., \(^{14-G}\)ΔCO\(_2\)) before and after the MPT, and (iv) test whether the resulting changes are statistically significant.

To define which individual data points contribute, we subsample each record based on a percentile cutoff criterion, for example, only the 25% “most interglacial” and the 25% “most glacial” data points in the quantification of \(^{12}\)CO\(_2\), \(^{14}\)CO\(_2\), and \(^{14-G}\)ΔCO\(_2\). In the case of the \(^{13}\)B-based CO\(_2\) reconstructions, we can rank the individual data points based on \(^{13}\)B measured on the same sample to directly reflect climate state, but in the case of the direct ice core measurements and our model-simulated CO\(_2\), we have to rank the individual data points based on their CO\(_2\) level. The value of 25% for the cutoff criterion is arbitrary, and therefore, we carry out and present the analysis for the full 10–50% range of nonoverlapping subsamples (Fig. S4). A low percentile cutoff implies that only the few most extreme data points are subsampled as glacial and interglacial, which maximizes the glacial/interglacial difference but also leads to a relatively large uncertainty, because only few data contribute to the estimates. Conversely, a high percentile cutoff implies that more individual data contribute to the estimation of CO\(_2\), which reduces the uncertainty and increases robustness but also, progressively averages away the end member changes that we try to quantify. For brevity, we make the tradeoff between robustness and sensitivity and exclusively discuss the 25% percentile cutoff in the main text, and we note that our qualitative results are independent of that choice (Fig. S4).

The second step of our analysis is to estimate \(^{12}\)CO\(_2\) and \(^{14}\)CO\(_2\) based on their respective subsamples (see above) and also propagate the uncertainty of the individual data points. To this end, we first sum up and normalize the probability density functions of the individual data points and their normally distributed uncertainty. We assign 1σ uncertainties of 20 μatm to our CO\(_2\) data, 14 μatm to the Hönisch et al. (11) data (ref. 1 as published; we note that ref. 1 does not include a number of sources of uncertainty that are included in the uncertainty calculations for our data), a nominal 10 μatm to ice core data, and 12.2 μatm to simulated CO\(_2\) based on model inversion residual rms. From these cumulative subsample probability density functions, we estimate the central tendency as the median probability and that normal dispersion as one-half of the central 66% cumulative probability interval. Thus, the dispersion of our estimates represents a combination of inherent measurement uncertainty associated with individual data points and of the true spread in CO\(_2\) levels within the subsample. To estimate \(^{14-G}\)ΔCO\(_2\), we simply subtract the central estimate of \(^{13}\)CO\(_2\) from \(^{14}\)CO\(_2\), whereby the normal dispersion of \(^{14-G}\)ΔCO\(_2\) is propagated as the root sum of squares of the normal dispersion estimates of \(^{13}\)CO\(_2\) from \(^{14}\)CO\(_2\). We label our model step in our analysis where we evaluate the uncertainty of the differences that we find in glacial and interglacial CO\(_2\) and glacial/interglacial CO\(_2\) range before and after the MPT (i.e., \(^{14}\)CO\(_2\), \(^{14-G}\)CO\(_2\), and \(^{14-G}\)ΔCO\(_2\) as also visualized in Fig. 4). To this end, we subtract eMPT \(^{14}\)CO\(_2\), \(^{14-G}\)CO\(_2\), and \(^{14-G}\)ΔCO\(_2\) from the corresponding LP260 estimates, again propagating the estimate dispersion as the root sum of squares of the individual normal dispersion estimates. For all four CO\(_2\) datasets (i.e., two \(^{13}\)B-based CO\(_2\) records, ice core data, and model inversion results), we find that estimated \(^{14-G}\)CO\(_2\) falls onto zero within its 1σ dispersion (thin black whisker in Fig. 4), and thus, we cannot reject the null hypothesis that interglacial CO\(_2\) levels were identical during our intervals (eMPT and LP260). Conversely, we find that estimated \(^{14}\)CO\(_2\) is negative for all four CO\(_2\) datasets, with the deviation from zero exceeding the threshold of 1.64 s for one-sided testing (thin black whisker in Fig. 4). That is, we can reject at 95% confidence level that glacial-stage CO\(_2\) before the MPT was as low or lower than after the MPT. Likewise and largely driven by this significant glacial-stage CO\(_2\) decline across the MPT, the estimated MPT change in the G-IG CO\(_2\) range is significantly greater than zero for all four datasets (at 95% confidence level for one-sided testing) (thin black whisker in Fig. 4). Thus, we can reject at 95% confidence level the null hypothesis that the magnitude of glacial/interglacial CO\(_2\) change before the MPT was as large (or larger) as the glacial/interglacial CO\(_2\) change after the MPT.

Additional results of statistical analysis are tabulated in Table S1.
Fig. S1. Map of sediment core sample sites. Color scale represents CO₂ disequilibrium between surface water and air, with surface water supersaturation indicated by red tones (35). The locations of ODP 999 and ODP 668 are indicated. Also indicated are the locations of cores used to inform our modeling results in green: ODP 982, IODP U1313, ODP 1090, and ODP 1093.

Fig. S2. Foraminiferal Mg/Ca and oxygen isotope measurements from ODP 999. (A) Planktic Mg/Ca temperature estimated from G. ruber (blue, LP260; red, eMPT). Temperatures are calculated as stated in Analytical Techniques; also shown is the previous record of Mg/Ca sea surface temperature (SST) from this Site (gray) (39). (B) Planktic G. ruber (blue) and benthic C. wuellerstorfi (red) oxygen isotope results plotted vs. the global benthic foraminiferal oxygen isotope stack (black) (29).
Fig. S3. Assesment of ALK assumption. Our treatment of the second carbonate system parameter asserts that any change in ALK will cause most of its CO$_2$ impact by changing pH, which we reconstruct directly, rather than by the change in the abundance of carbonate and bicarbonate ion. (A) To test this assertion, we cross-plot reconstructed pH and ice core CO$_2$ and assess the relationship between these empirical data against our assertion. Blue and purple dots are our LP260 CO$_2$ data and CO$_2$ data from ref. 1, respectively, with the corresponding CO$_2$ interpolated from the ice core CO$_2$ record (19). The three solid lines represent the theoretical pH–CO$_2$ relationships under the following assumptions: (red) constant DIC, (black) constant ALK, and (green) DIC and ALK both levels, respectively. The implied interpolated from the ice core CO$_2$ data and CO$_2$ of 0.15 to represent interglacial pH values during both eMPT and LP260, eMPT glacial pH, 0.15, and 8.4 offset is too small to undermine the main conclusions of our study.

(B) To illustrate our ALK assumption further, we show CO$_2$ as a function of ALK and pH at 25 °C and salinity of 35, as predicted yielding nearly vertical contours that show a strong sensitivity of CO$_2$ to pH and a weak sensitivity to ALK. As a point of reference, we highlight pH values of 8.2 ± 0.15, 8.3 ± 0.15, and 8.4 ± 0.15 to represent interglacial pH values during both eMPT and LP260, eMPT glacial pH, and LP260 glacial pH, respectively. The large ALK uncertainty range that we propagate in our calculations (gray shading) more than covers estimates of ALK change over recent G-IG cycles (i.e., dashed line connecting IG with Last Glacial Maximum). (C) From the sensitivity calculations, we estimate the CO$_2$ offset between two plausible treatments of ALK uncertainty; (solid lines) assuming ALK remained within constant range (i.e., 18 ± 175 µmol/kg) and (dashed lines) assuming an ALK to pH correlation of +100 µmol/kg per 0.2 pH increase in addition to the ±175 µmol/kg ALK uncertainty. We find that the ALK to pH correlation causes modest mean increases of ~5 and ~8 ppm in the estimates for eMPT and LP260 glacial CO$_2$ levels, respectively. The implied ~3-ppm reduction in the difference between glacial-stage eMPT and LP260 CO$_2$ is too small to undermine the main conclusions of our study.

Fig. S4. Quantification of CO$_2$ change since the MPT. As described in detail in Materials and Methods, we quantify (Top) interglacial CO$_2$, (Middle) glacial CO$_2$, and (Bottom) interglacial – glacial CO$_2$, for data both from the latest Late Pleistocene (blue) and during or before the MPT (red). From left to right, quantification is carried out on four different datasets: boron isotope data from ODP 999 (this study) and ODP 668B (1), CO$_2$ directly measured on air trapped in Antarctic ice using the compilation of continuous ice core CO$_2$ reconstructions (19) and stratigraphically disturbed ~1-My-old “blue ice” from the Allan Hills (2), and CYCLOPS model inversion (this study). To define glacial and interglacial subsets of the datasets, we use on a cutoff criterion, subsampling the data with a given percentile of lowest/highest δ18O (marine records) or CO$_2$ (ice core, model). For this figure, we carry out this analysis while systematically changing the value of the critical percentiles (x axis). The results discussed in the main manuscript and shown in Fig. 4 correspond to a 25% cutoff percentile, but as shown here, our conclusions are robust across a wide range of percentiles. The underlying data are compiled for percentile increments of 5% in Table S1.
Fig. S5. Overview of CYCLOPS model inversion results. Top shows (in black) the composite ice core CO$_2$ record (19) used as the inversion target and (in blue) the model inversion result, with dark and light shading indicating ±1x and ±2x the rms error of the inversion (12.3 μatm), respectively. Middle shows the three paleoceanographic proxy records used to drive the inversion as described in detail in SI Carbon Cycle Modeling. Bottom illustrates the contribution of dustborne iron fertilization of the Sub-Antarctic Zone of the Southern Ocean, highlighting the simulated CO$_2$ change that can be attributed to that forcing. FeMAR, iron mass accumulation rate; NADW/GNAIW, North Atlantic Deep Water/Glacial North Atlantic Intermediate Water.
Fig. S6. Spectral analysis of various paleoclimatological records. Ice core CO$_2$ levels (19), benthic foraminiferal oxygen isotope stack (29), reconstructed SL change (12), our boron isotope-derived CO$_2$ reconstruction, and CO$_2$ calculated by inversion of the CYCLOPS carbon cycle model (as described in SI Carbon Cycle Modeling). Spectra in Left are derived from data down-sampled to the temporal resolution of the oxygen isotope stack, and spectra in Right are derived from data down-sampled to the temporal resolution of our boron isotope-derived CO$_2$ reconstruction. Evaluating the datasets at identical age points yields identical critical significance levels (horizontal dashed lines), shown here for 0.5, 0.9, and 0.99 for all panels. We use the Lomb–Scargle method for frequency analysis of unequally spaced data as implemented in the “plomb” Matlab function.
Fig. S7. Regression of relative SL change and CO$_2$ radiative forcing. Regression of our (A) LP260 and (D) eMPT data against different SL records (numbered 1-4 and color coded; note the Red Sea record does not extend to the eMPT period). The error bars indicate ±2σ uncertainties for individual data points, and the light/dark envelope indicates the 1σ/2σ confidence interval of the regressions. Regression of our (A) LP260 and (D) eMPT data against different SL records (numbered 1–4 and color coded; note the Red Sea record does not extend to the eMPT period). The error bars indicate ±2σ uncertainties for individual data points, and the light/dark envelope indicates the 1σ/2σ confidence interval of the regressions. The (B) slope for (1) LP260 and (3) eMPT and (C) intercept for (1) LP260 and (3) eMPT regressions can be compared against equivalent regression results using a (B2 and C2, respectively) 200-ky sliding window of the continuous ice core CO$_2$ record (19), which yields relatively high slope values and intercepts around 0 m. Slopes and intercepts based on ice core CO$_2$ are consistent with the regression results for our LP260 data, whereas the slope regressed from our eMPT data is consistently lower. All regressions are based on the method by York et al. (61), which fully takes into account uncertainty in x and y. More discussion of methodology and uncertainty treatment is in SI Forcing to SL Relationship. Dashed lines in C indicate prediction interval.
Fig. S8. Regression of δ¹⁸O and δ¹¹B records. A and B display the regression results of our LP260 and eMPT boron isotope datasets against the LR04 benthic foraminifera oxygen isotope stack (Fig. S7 has details). C and D compare the results of the regression slope and intercept, respectively, with equivalent analyses using a 200-ky sliding window based on the ice core CO₂ record (C2 and D2). The slopes mimic those seen in the equivalent SL analyses.

Fig. S9. Synthetic test of the York regression method. Test of regression robustness based on synthetic data that mimic our eMPT dataset. Noise is added to a known relationship of SL and CO₂ radiative forcing (y = 25x; shown as the fat black line) before the York regression is applied. We test the performance of the regression as a function of how many data points are contained in the dataset and find that the 51 samples in our eMPT dataset should be sufficient to recover the true CO₂ forcing to SL relationship with the required accuracy.
<table>
<thead>
<tr>
<th>CO2 record(s)</th>
<th>Source</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interglacial eMPT This study, ODP 999 boron isorones</td>
<td>308.23 ± 17.93</td>
<td>290.13 ± 14.20</td>
<td>282.43 ± 9.61</td>
<td>282.62 ± 8.34</td>
<td>284.39 ± 8.28</td>
<td>285.09 ± 7.89</td>
<td>285.61 ± 7.53</td>
<td>282.06 ± 7.55</td>
<td>285.06 ± 7.01</td>
<td>283.83 ± 6.65</td>
<td></td>
</tr>
<tr>
<td>Interglacial eMPT</td>
<td>289.89 ± 23.14</td>
<td>286.55 ± 13.21</td>
<td>284.94 ± 10.64</td>
<td>277.87 ± 9.69</td>
<td>277.30 ± 8.82</td>
<td>276.57 ± 7.40</td>
<td>274.34 ± 6.65</td>
<td>271.29 ± 6.41</td>
<td>269.64 ± 6.01</td>
<td>268.05 ± 5.51</td>
<td></td>
</tr>
<tr>
<td>Interglacial eMPT to 400 ky</td>
<td>313.55 ± 8.09</td>
<td>306.50 ± 14.04</td>
<td>293.45 ± 11.19</td>
<td>293.12 ± 10.76</td>
<td>297.06 ± 12.53</td>
<td>295.93 ± 11.01</td>
<td>311.44 ± 11.39</td>
<td>287.21 ± 11.84</td>
<td>288.19 ± 11.75</td>
<td>287.97 ± 10.70</td>
<td></td>
</tr>
<tr>
<td>Glacial eMPT</td>
<td>256.04 ± 22.94</td>
<td>243.73 ± 16.54</td>
<td>237.84 ± 12.26</td>
<td>240.26 ± 10.03</td>
<td>241.44 ± 10.26</td>
<td>246.36 ± 10.50</td>
<td>247.55 ± 10.45</td>
<td>248.67 ± 10.05</td>
<td>253.71 ± 9.93</td>
<td>257.37 ± 8.79</td>
<td></td>
</tr>
<tr>
<td>Glacial eMPT to 400 ky</td>
<td>190.21 ± 20.06</td>
<td>201.31 ± 18.50</td>
<td>198.60 ± 16.03</td>
<td>202.70 ± 17.71</td>
<td>204.32 ± 16.60</td>
<td>206.01 ± 15.95</td>
<td>207.58 ± 17.72</td>
<td>210.18 ± 15.86</td>
<td>212.85 ± 15.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacial eMPT to 1,000 ky</td>
<td>43.58 ± 28.63</td>
<td>45.87 ± 26.81</td>
<td>43.65 ± 24.36</td>
<td>42.36 ± 23.05</td>
<td>42.96 ± 21.35</td>
<td>48.39 ± 18.66</td>
<td>38.73 ± 16.13</td>
<td>38.66 ± 12.88</td>
<td>33.89 ± 12.57</td>
<td>31.35 ± 12.15</td>
<td></td>
</tr>
<tr>
<td>Glacial eMPT to 600 ky</td>
<td>43.65 ± 24.36</td>
<td>42.96 ± 21.35</td>
<td>48.39 ± 18.66</td>
<td>38.73 ± 16.13</td>
<td>38.66 ± 12.88</td>
<td>33.89 ± 12.57</td>
<td>31.35 ± 12.15</td>
<td>26.46 ± 11.02</td>
<td>22.58 ± 10.39</td>
<td>17.73 ± 10.10</td>
<td></td>
</tr>
<tr>
<td>Glacial eMPT to 100 ky</td>
<td>31.35 ± 12.15</td>
<td>26.46 ± 11.02</td>
<td>22.58 ± 10.39</td>
<td>17.73 ± 10.10</td>
<td>14.94 ± 9.78</td>
<td>12.38 ± 9.43</td>
<td>10.11 ± 9.00</td>
<td>8.20 ± 8.63</td>
<td>6.81 ± 6.50</td>
<td>5.67 ± 5.41</td>
<td></td>
</tr>
<tr>
<td>Glacial eMPT to 0 ky</td>
<td>26.46 ± 11.02</td>
<td>22.58 ± 10.39</td>
<td>17.73 ± 10.10</td>
<td>14.94 ± 9.78</td>
<td>12.38 ± 9.43</td>
<td>10.11 ± 9.00</td>
<td>8.20 ± 8.63</td>
<td>6.81 ± 6.50</td>
<td>5.67 ± 5.41</td>
<td>4.87 ± 4.72</td>
<td></td>
</tr>
</tbody>
</table>

Table 51. Auxiliary tabulated results from the quantification of atmospheric CO2 change since the MPT

| Results as shown in Fig. 4 and Fig. 54, with methodology as described in S1 Quantification of CO2, CO2, and 14CO2. IG-G, interglacial–glacial: Bold values represent the middle 25% cutoff used in the paper. |